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Abstract

Deformation twinning is an important mode of plastic deformation in hexagonal
close-packed (HCP) materials. Experimental observations indicate that these
twins occur heterogeneously across the polycrystalline microstructure during
deformation. The variation is too substantial to be authentically represented by
average values, advocating the use of statistical analyses and stochastic models
in the studies of HCP material deformation response. This chapter reviews recent
efforts to explain the origin of the stochastic nature of twinning and to analyze
and simulate deformation twinning in HCP materials from this perspective.

1 Introduction

Hexagonal close-packed (HCP) polycrystals deform by two mechanisms: the glide
of dislocations and expansion of deformation twins (Beyerlein et al. 2014; Partridge
1967; Yoo 1981; Yoo and Lee 1991). Both dislocations and twins are confined to
proceed on particular crystallographic planes and directions in a given crystal. To
deform the crystal, dislocations glide on these planes. Twins, on the other hand,
shear the atoms on these planes causing them to reposition into a configuration
that is crystallographically reoriented from the original crystal. The high-resolution
transmission electron microscopy (HR-TEM) image in Fig. 1a shows the twin-
parent relationship for

{
1012

}
tensile twin in HCP Zr and is illustrated in Fig. 1b.

Strain is imposed as the twin domain grows in size (Beyerlein and Tome 2010;
Capolungo et al. 2009; Kumar et al. 2018). Compared to slip, twins greatly affect
the mechanical response (Proust et al. 2007; Salem et al. 2006; Wang et al. 2013a;
Wronski et al. 2018), formability and ductility (Barnett 2007a, b; Kumar et al.
2017d), and failure mechanisms (Simkin et al. 2007; Yang et al. 2008; Yin et al.
2008) of HCP metals. Figure 1c presents a typical example of how twinning can
affect the mechanical response of an HCP alloy (AZ31 Mg) (Wang et al. 2013a). As
shown, many details, such as yield stress, strain hardening, and ultimate strength,
are affected by twinning.

Both mechanisms, slip and twinning, occur heterogeneously across the crystal.
Heterogeneity in slip is evident at nanometer to micron scales. Dislocations glide in
arrays within slip bands that are nanometers in thickness. As deformation proceeds,
dislocations can form patterns consisting of dislocation-rich areas separating nearly
dislocation-free areas (Agnew et al. 2002; Akhtar and Teghtsoo 1971; Bay et al.
1992; Hughes and Hansen 1997; Kuhlman-wilsdorf and Hansen 1991; Kuhlmann-
Wilsdorf 1999; Kumar and Mahesh 2012). Highly resolved microscopy techniques,
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Fig. 1 (a) High-resolution TEM image of the twin-parent orientation relationship for the {1012}
twin in HCP Zr (Morrow et al. 2014c). (b) Schematic of the shearing of atoms that form the
twinned lattice from the parent lattice. (c) Example showing the effect of deformation twinning on
the stress-strain response of HCP AZ31 Mg alloy (Wang et al. 2013a)

such as TEM, can be used to observe individual dislocations and patterns of
dislocations within deformed grains and grain boundaries.

Compared to slip, however, the heterogeneity in twinning is evident at much
larger scales, such as those of the polycrystal (Barnett et al. 2012; Beyerlein
et al. 2010; Capolungo et al. 2009; Kumar et al. 2018; Wang et al. 2013c).
The nonuniform nature of twinning can be easily recognized at the resolution of
most standard microscopy and diffraction techniques, such as EBSD and optical
microscopy. For instance, for Mg (c/a = 1.624), the twin reorientation and local
shear associated with the most common tensile twin is 86◦ and ∼13%, respectively.
Large sections of one grain can contain multiple twin domains, whereas another
grain of seemingly similar properties (size, shape, orientation) contains no twins.
Even in the same grain, the twin thickness can vary easily by two or three times.
Twins can expand into neighboring grains. At this larger polycrystal scale, the
heterogeneity in dislocation slip would not be discernable.

The widespread heterogeneity in twinning has motivated the use of statistical
analyses to understand the role of microstructure, such as grain orientation and
grain size, on twinning (Barnett et al. 2012; Beyerlein et al. 2010; Capolungo
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et al. 2009; Kumar et al. 2018; Wang et al. 2013c). The apparent sensitivity to
local heterogeneities in stress has inspired the use of in-situ testing and simulation
techniques to reveal how twin lamella form and expand within a polycrystalline
microstructure during deformation (Cheng and Ghosh 2015, 2017a, b; Hazeli et al.
2013; Khosravani et al. 2015; Morrow et al. 2014a, b, c; Wang et al. 2010a, 2011,
2012, 2013b; Wu et al. 2016). Many crystal plasticity models have advanced to
incorporate the stochasticity in twin formation and growth, finding better agreement
in stress-strain response and microscopy data than the conventional deterministic
approach for twin activation (Abdolvand et al. 2015a, b; Abdolvand and Wilkinson
2016; Ardeljan et al. 2015; Beyerlein et al. 2011, 2012; Beyerlein and Tome 2010;
Kumar et al. 2017b; Niezgoda et al. 2013, 2014).

The aim of this chapter is to summarize the recent advancements in understand-
ing the formation and growth of deformation twins and likely explanations for the
apparent stochastic nature of deformation twinning. The chapter is structured as fol-
lows. It begins with a brief review of statistical analyses of large microstructural data
sets of materials that twinned during deformation. Next, the modeling methods that
have been used to date to simulate twins in HCP polycrystals are briefly introduced.
The chapter ends with examples from these calculations and key findings on the role
of microstructure and local stresses on twin formation, propagation, and growth.

2 Twinning as a Stochastic – Sequential Process

Statistical analysis of twin and stochastic analysis of twinning dynamics can be used
as a way toward better understanding of twinning. For many decades, analyses of
microscopy data and deformation models have taken a deterministic approach to
treating deformation twinning and only recently have they incorporated stochastic
aspects, showing noticeable improvements in prediction. The statistical analyses and
companion modeling efforts will be discussed in the following sections.

2.1 Dynamic Processes of Twinning

The twinning process can be viewed broadly as taking place in three stages.
Witnessing these stages in situ is challenging, and in lieu of displaying actual
experimental images, a schematic of these stages is provided in Fig. 2, where
for simplicity only one twin in one grain is shown. Stage 1 is the creation of an
embryo (nucleation), which begins at the atomic scale. Twin nucleation models
assume that the twinning partials, needed to create a twin embryo, form directly
from the dissociation of pre-existing dislocations. The initiating dislocations may
be lattice dislocations (Capolungo and Beyerlein 2008; Cohen and Weertman 1963;
Jagannadham 1976; Mahajan and Chin 1973; Mendelson 1972; Priestner and Leslie
1965) or dislocations found in grain boundaries (Barrett and El Kadiri 2014;
Beyerlein et al. 2011, 2012; Wang et al. 2014) or moving dislocations that have
impinged on bi-phase interfaces (Beyerlein et al. 2013; Zheng et al. 2012). The
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Nucleation Propagation Growth
a b c

Fig. 2 Schematic showing three basic sequential steps involved in the formation of twin lamella
(Kumar et al. 2015). (a) Nucleation, formation of twin nuclei at a given grain boundary; (b)
propagation, propagation of a twin nucleus into the parent crystal; (c) growth, migration of the
twin boundary and thickening of the lamella

stresses needed to support these reactions are relatively high, requiring localized
stress concentrations, generated for example, at the head of dislocation pile ups.

Stages 2 and 3 involve twin growth and the migration of twin boundaries. In
stage 2, growing twin embryos, initially nanoscale to submicron in size, propagate
under stress into the grains, often spanning the entire crystal and terminating at
the other grain boundaries bounding the same grain (Beyerlein and Tome 2010;
Capolungo et al. 2009; Kumar et al. 2018; McCabe et al. 2009). In stage 3, these ter-
minated twins begin to propagate and expand. They can grow either by thickening,
so their width increases or by transmitting, a process by which a second twin forms
on the other side of the grain boundary where the first twin and grain boundary meet.

Both twin nucleation and expansion can occur only if the combination of required
stresses and sufficient density of defects are present. Both aspects, mechanical
and material in nature, can vary statistically in space and in time in a deforming
microstructure and can result in the statistical appearance of a twin or twins in a
grain.

2.2 Statistical Features of Deformation Twins

In a polycrystal, grains vary in size, crystallographic orientation, and local grain
neighborhood. Most commonly considered microstructural variables that affect the
propensity for twinning are grain orientation, grain size, and grain neighborhoods.
Using EBSD, twins of thicknesses greater than ∼10 nm can be easily seen. As
mentioned earlier, analyses of twins using EBSD data on deformed materials
typically find twin lamellae that span the grain completely and are bound by grain
boundaries.

Due to the statistical nature of twinning, in order to develop reliable statistical
correlations between twin properties and grain microstructure from EBSD data,
thousands of grains and twins would need to be analyzed. With the advent of auto-
mated EBSD techniques, a twinning microstructure that has formed in thousands of
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deformed grains can be assessed relative rapidly facilitating creation of statistically
significant data sets. With such data, statistical analyses have been carried out to
identify correlations between properties of the twinning microstructure (variant,
twin thickness) with the grain microstructure (grain size, grain orientation, and grain
neighborhood).

In recent years, statistical analyses of twins have been carried out on a number of
HCP metals, Mg, Zr, and Ti, and also Mg alloys (Barnett et al. 2012; Beyerlein et al.
2010; Capolungo et al. 2009; Ghaderi and Barnett 2011; Juan et al. 2015; Kacher
and Minor 2014; Khosravani et al. 2015; Kumar et al. 2016a, 2017c, 2018; Shi et al.
2015a, c; Tsai and Chang 2013). The general finding is that while grain size and
grain orientation can be strongly correlated with the propensity of twinning, the
correlations are not as strong as those expected from a deterministic point of view.
For instance, the following are found: (1) not all favorably oriented grains twin, (2)
some not favorably oriented grains twin, (3) only 40% of twin variants have highest
Schmid factor, (4) not all grains of the same orientation twin, (5) twinned grains
contain variable numbers of twins, (6) not all grains of the same size twin, and (7)
twins have variable thickness.

To elucidate the statistical variation in twinning grain to grain, the statistical
results of

{
1012

}
tensile twin in HCP Mg and Zr are discussed in the following

sections. The materials examined are high-purity polycrystalline Mg and Zr
with similar initial textures and, hence, similar grain misorientation distributions
(Beyerlein et al. 2010; Capolungo et al. 2009). The Mg has a strong basal texture
resulting from rolling, where most of the basal poles are aligned within 30◦ of
the normal direction of the sheet. The Zr has a similar strong basal texture, which
was developed via clock rolling rather than conventional rolling (Kaschner et al.
2006). Both materials were compressed at 10−3/s in an in-plane direction to activate{
1012

}
twinning. In order to develop a sufficient number of incipient twins in many

grains, Zr was compressed at 77 K to 10% strains, and Mg was compressed at room
temperature to 3% strain. Figure 3 shows the sample EBSD images of the twinning
microstructure of the deformed Mg and Zr. Using an automated EBSD software,
large data sets were generated by analyzing several distinct EBSD scans (Beyerlein
et al. 2010; Capolungo et al. 2009). The number of grains and twins investigated
totaled 2339 and 8550 for Mg, and 639 and 1065 for Zr.

2.3 Statistical Analysis of Crystallographic Orientation Effects

Grains are considered to be well oriented for twinning by a given twin type if they
have one or more of the six twin variants bearing a high Schmid factor (e.g., >0.33).
From a deterministic viewpoint, the twin variant in a grain most likely to form is
the one that has the highest Schmid factor. The Schmid factor (SF) of observable
twins is the most common parameter quoted in association with twinning. This
reference is especially true when discussing whether twin activation obeys an
“Schmid criterion,” that is, one that is activated by a resolved shear stress in the
twin plane and in the twinning direction (TRSS). The SF is defined as the ratio
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Fig. 3 Sample EBSD images
of deformed (a) Mg and (b)
Zr metals showing the
activation of tensile twining
(Beyerlein et al. 2010;
Capolungo et al. 2009). To
activate sufficient number of
twins, Mg and Zr samples
compressed along rolling
direction to 3% at RT and to
10% at 77 K, respectively

between the TRSS and the value of the macroscopic tensile or compressive stress.
The SF varies between −0.5 and 0.5. It provides a geometric measure of how well
a twin system is oriented with respect to an external axial stress. Twins belonging
to a given grain are classified by their variant and its rank, 1–6, in decreasing order
of their SF. If twin activation obeys a Schmid criterion based on the macroscopic
applied stress, the twin would correspond to variant 1, the variant having the highest
SF among the six in a grain. In this section, the effect of grain orientation as reflected
by its SF on twinning formation, growth, and variant selection is discussed.

Figure 4a plots the twinning frequency taken from large data sets on twinned Mg
and Zr. The analysis indicates that for both Zr and Mg, the frequency of twinning
increases with SF, which is to be expected. However low SF twins are also activated.
Figure 4c, d shows the distribution of twin variants as a function of twin SF for Mg
and Zr, respectively. The frequency of each twin variant (1–6) is 35.6%, 23.5%,
21.3%, 11.7%, 3.2%, and 4.6%, respectively, in Mg. Similar frequency in Zr is
49.8%, 20.0%, 17.9%, 8.2%, 3.3%, and 0.7%. It is surprisingly common, among
EBSD studies on twinned microstructures, to find that the twin variant selected is
not the one with the highest Schmid factor or even the second highest Schmid factor.
These low-rank SF twins have been referred to as “non-Schmid” twins. Activation
of non-Schmid twins has also been reported in other HCP metal systems, like HCP
Ti and AZ31 Mg alloy (Bieler et al. 2014; Kumar et al. 2018; Shi et al. 2015a, b;
Wang et al. 2013c).
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Fig. 4 Effect of grain orientation, as measured by the Schmid factor associated with the twin
system, on (a) twinning frequency and (b) average twin thickness of

{
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}
tensile twins in

deformed Mg (Beyerlein et al. 2010) and deformed Zr (Capolungo et al. 2009). (c) and (d) are
the corresponding twin variant distributions in Mg and Zr, respectively

With all else being the same, twins with high geometric SF are expected to be
thicker compared to twins with low SF. From the statistical data set, Fig. 4b shows
the distribution of twin thickness as a function of SF for Mg and Zr. Evidently, twins
with higher SF are thicker, presumably because they are better oriented for growth.

2.4 Statistical Analysis of Grain Size Effects

A common finding in many metals, not only those of HCP crystal structure, is that
polycrystals with smaller average grain sizes develop lower twin volume fractions
(Barnett et al. 2004, 2012; Beyerlein et al. 2010; Capolungo et al. 2009; Ecob and
Ralph 1983; Ghaderi and Barnett 2011; Gutierrez-Urrutia and Raabe 2012; Jain
et al. 2008; Juan et al. 2015; Kang et al. 2016; Kumar et al. 2016c, 2018; Lentz et al.
2014; Liu et al. 2015; Rahman et al. 2015; Stanford and Barnett 2008; Tsai and
Chang 2013; Wongwiwat and Murr 1978). This frequent observation has motived
the application of the Hall-Petch scaling law, originally used for slip, to twinning.
This law was first used to explain the higher yield stresses or fracture strains with
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tensile twins in Mg (Beyerlein et al. 2010) and Zr

(Capolungo et al. 2009)

decreasing grain size. For twinning, it has been applied in a similar way, such as a
twinning stress that increases according 1/

√
D, where D is grain size. In nearly all

of these cases, the grain size refers to the diameter of the grain that has been cut
in the 2D scan. In this section, the grain size dependence on twin frequency from
statistically large EBSD data sets are discussed.

The variation in twinning tendency (defined as the number of twinned grains/total
number of grains) with grain size for Mg and Zr is shown in Fig. 5a. Here the
twinned grains refer to grains with at least one twin of any type. The analysis
finds that for both material systems, the propensity for twin activation increases
with increasing grain size. It is worth noting that the grain size dependence is not
monotonic: the grain size dependence is more pronounced for smaller size grains
and tends to saturate for larger grains (see Fig. 5a). The distribution of average twin
thickness as a function of grain size is shown in Fig. 5b. The grain size plays a strong
role on twin thickness in Mg, but not so in Zr. As another twinning metric, Fig. 5c
shows the effect of grain size on the formation of multiple twins in HCP Mg and Zr.
In both the materials, the number of twins per grain increases with increasing grain
size, but it is particularly striking in Zr. Taking all the data into account, it appears
that a grain of a given size in Zr accommodates more twins than grains of the same
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size in Mg. Similar twinning statistics has been studied in other HCP metals and for
other types of twins (Ghaderi and Barnett 2011; Juan et al. 2015; Lentz et al. 2015,
2016).

3 Computational Modeling Methods

3.1 Challenges in Modeling the Stochastic Twinning Process

In the foregoing section, statistical aspects of deformation twins were discussed.
The substantial spatial variability in these features, across a deformed material
grain structure, presents challenges in building both understanding and material
models for several reasons. Firstly, twins appear to form randomly as the material
is being deformed, and the origins of this stochastic behavior still need to be
fully understood. Secondly, the discrete nature of twinning makes it inherently
inhomogeneous, making the more commonly used and computationally efficient
homogenization mean-field models not readily applicable to treat materials that
undergo profuse deformation twinning. Thirdly, twin development is naturally a
multiscale process. Twins initiate at the atomic scale, form embryos at the nanoscale,
and grow to the submicron scale and can propagate across a grain and grain
structure, manifesting at the micron scale and larger. Thus, it is not readily apparent
how to apply coarse-graining modeling techniques to deformation twinning. Last,
twins do not occur in isolation but concurrently with slip. The shear for HCP metals
for the most common

{
1012

}
tensile twin is 13% for Mg. Thus, even if the entire

grain were to twin, slip would need to occur simultaneously in order to plastically
strain the material. Twin-slip interactions are just as important or arguably more
important for understanding the constitutive response of a material that deforms by
slip and twinning. These interactions cannot be fully understood by studying slip
and twinning separately.

3.2 Some Important Components for Models of Polycrystalline
Materials That Deform by Slip and Twinning

Modeling the deformation of polycrystalline materials has been accomplished via a
combination of crystal plasticity theory and polycrystal modeling schemes. Crystal
plasticity (CP) theory is used to relate the distortion of a strained crystal to slip on
crystallographic slip systems (Asaro 1983; Asaro and Lubarda 2006; Hosford 1993).
Polycrystal plasticity models then link the individual grain response predicted by CP
theory to the overall mechanical response of the polycrystalline aggregate (Asaro
1983; Canova et al. 1988; Kocks 1970; Kocks et al. 2000; Peirce et al. 1982; Roters
et al. 2010; Tome et al. 1984). These polycrystal models appear in various levels of
sophistication and computational efficiency as will be discussed shortly.

Implementing deformation twinning into a polycrystalline model would ideally
seek to include the following elements: (1) the available twin modes, (2) a model
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for activating a twin or a number of twins inside a grain, (3) a criterion for variant
selection of the activated twins, (4) a scheme for reorienting and shearing the portion
of the grain that is twinned, and (5) a criterion to grow the twin. Additional elements
include accounting for twin-slip interactions and twin-twin interactions and twin
transmission across grains. Not as many models exist that account for these other
phenomena, in spite of the fact that they are common occurrences.

3.3 Two Categories of Computational Methods for Modeling
Twins in Polycrystals

Computational crystal plasticity-based material models for the deformation of poly-
crystalline materials can generally be broken down into two categories: mean-field
models and full-field, spatially resolved models. The homogenized or mean-field
response models, such as self-consistent models, take only a statistical description
of the microstructure as input (e.g., crystallographic texture) and return a sample
scale or effective response and microstructure evolution (Kocks et al. 2000). In this
chapter, the visco-plastic self-consistent (VPSC) model is presented as an example
for homogenized models (Lebensohn and Tome 1993).

Full-field micromechanical models, such as crystal plasticity finite element
(CPFEM)- or crystal plasticity fast Fourier transform (CPFFT)-based approaches,
require as input an explicit spatially resolved description of the material structure
(e.g., grain orientation map) and return the spatially resolved material response
and local structural evolution (Abdolvand and Daymond 2013b; Abdolvand et al.
2011; Ardeljan et al. 2016; Bronkhorst et al. 1992; Delannay et al. 2006; Eisenlohr
et al. 2013; Idiart et al. 2006; Kalidindi 1998; Kanjarla et al. 2012b; Knezevic et al.
2016; Lebensohn 2001; Lebensohn et al. 2008, 2011a, b, 2012; Liu et al. 2010;
Masson et al. 2000; Michel et al. 2000, 2001; Mika and Dawson 1999; Moulinec
and Suquet 1994, 1998; Shanthraj et al. 2015; Zecevic and Knezevic 2017; Zhao
et al. 2007). The term “full-field” indicates that both long-range and short-range
grain interactions are considered, and the micromechanical fields are resolved on a
discrete grid.

3.4 Homogenized VPSC Model Framework

VPSC model describes the polycrystal as a collection of orientations (grains) each
with associated volume fraction. Each grain is regarded as a visco-plastic inclusion
embedded in, and interacting with, a “homogeneous effective medium” (HEM),
which has the average properties of the polycrystalline aggregate. The macroscopic
response of the polycrystal results from the contribution of each grain. The visco-
plastic compliance of the HEM is given by a self-consistent condition applied on the
grain averages. At the single crystal level, the strain rate is given by the individual
shear contributions of all active slip and twinning systems in the grain, as:
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ε̇
g
ij =

∑

s

ms
ij γ̇

s = γ̇0

∑

s

ms
ij

(
ms

klσ
g
kl

τs

)n

(1)

Here, ms is the symmetric Schmid tensor and γ̇ s is the shear rate on system
s, γ̇0 is a normalized shear rate, n is the inverse strain-rate sensitivity, and τs is
the threshold or critical resolved shear stress required to activate system s. The
latter is evolved using a thermally activated dislocation density-based hardening
law (Beyerlein and Tome 2008). In order to avoid the further strain-rate dependence
associated with the power n in Eq. (1), γ̇0 is chosen equal to the norm of the
macroscopic strain rate

∥∥ε̇ij

∥∥. The constitutive laws relating strain-rate and stress
for a single crystal and for the aggregate are written in a linearized form as:

ε̇g = Mg : σg + ε̇
g

0
ε̇ = M : σ + ε̇0

(2)

where Mg and M are the grain and the macroscopic visco-plastic compliance
tensors. The tensors ε̇

g

0 and ε̇0 are the back-extrapolated terms for the grain and
aggregate, respectively. These variables result from the linearization of Eq. (1). The
effect of the linearization scheme on individual grain and polycrystal responses,
thus, emerges only through these two variables.

The inclusion formalism couples stress and strain-rate in the grain (σ g, ε̇g)

with the average stress and strain-rate in the effective medium
(
σ , ε̇

)
through an

interaction equation:

(
ε̇g − ε̇

) = −M̃ : (
σg − σ

)
(3)

where

M̃ = neff(I − E)−1 : E : M
secant

(4)

and E is the visco-plastic Eshelby tensor, M
secant

is the macroscopic visco-plastic
compliance tensor for the secant interaction

(
ε̇0 = 0

)
, and the parameter neff “tunes”

the stiffness of the inclusion-matrix interaction: neff = 0 for a Taylor case and
neff = 1 for the stiff secant case.

3.5 Twinning in SC Approach: CG Model

An aspect of twinning that needs to be incorporated into the models is the fact
that twins are finite domains that reorient the lattice and shear portions of the
grain (usually taking on a lamellar morphology) and introduce a twin boundary.
Over the years, a number of methods have been introduced for treating the
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Fig. 6 Schematic of the composite-grain (CG) model for modeling twin reorientations within
the VPSC framework. Un-twinned grain is represented as an ellipsoidal inclusion within a
homogenous effective medium (HEM). For twinned grains, which may be comprised of one twin
variant type or multiple variants, the matrix and each twin variant is represented as separate
inclusions. As an example, “Twin-1” corresponds to two twins of the same variant, and “Twin-
2” corresponds to another twin variant, all within the same grain. Here the HEM represents the
average response of the polycrystal except the chosen grain and/or twin

reorientation that accompanies twinning: (i) predominant twin reorientation (PTR)
method (Lebensohn and Tome 1993; Tome et al. 1991) and composite-grain (CG)
method (Proust et al. 2009; Proust et al. 2007), for instance. In these schemes, the
twin phase replaces some fraction of the matrix phase, and as the volume of the twin
phase increases with strain, the volume of the matrix phase shrinks accordingly.
They generally involve splitting the original orientation (grain) into two parts, one
part that is twinned and another part that is the matrix, while preserving the original
volume fraction of the grain. For instance, in the CG method, the newly twinned
grain is split into two inclusions, a twin inclusion with the twinned volume fraction
and the remaining parent inclusion with the remaining fraction. The newly formed
twin inclusions are treated as new ellipsoidal inclusions and added to the total
number of grains in the polycrystal. As grains in these models are represented as
ellipsoidal inclusions, the new twin inclusions can be made initially flat ellipsoids
with their short axis perpendicular to the twinning plane, to reflect the lamellar
shape of newly formed twins (see Fig. 6). The twinned inclusion adopts a mirror
orientation with respect to the orientation of the parent grain, that is, characteristic
of the type of twin (Yoo 1981; Yoo and Lee 1991).

Later, a modified CG model was developed, which allows for multiple twin types
and variants to form in the same grain (Niezgoda et al. 2014). In the modified
CG model, the twin and matrix grains are treated as two noninteracting inclusions
(grains) embedded in the homogeneous effective medium. It is schematically shown



14 I. J. Beyerlein and M. Arul Kumar

in Fig. 6. In the figure, a grain with two types of twin variants is shown, and in this
case, un-twinned matrix grain, twin of variant 1, and twin of variant 2 are considered
separate inclusions in the effective medium. The two twins are initially given a
flat ellipsoid shape. The shortest axis of the ellipsoid is parallel to the twinning
plane normal and another of the ellipsoid axes is parallel to the twinning direction.
A similarly oriented ellipsoid is created to represent the un-twinned region of the
grain. The aspect ratios of both ellipsoids evolve with deformation. These twin
and matrix grains are characterized by independent secant compliances Msec, and
consequently no explicit twin-matrix interaction is considered when solving the self-
consistent equations. The relative fraction of each phase is updated incrementally
with deformation as the grain twins.

Once a twin has formed inside a grain, growth of this twin is determined in a
more traditional deterministic fashion within the modified CG framework. During
deformation, the twin shear rate γ̇ v is calculated for the nucleated twin or variant v
in each grain by:

γ̇ v = γ̇0

(
τv

τtwin
c

)n

(5)

Here τv and τtwin
c are the resolved shear stress on twin variant v, and critical

resolved shear stress for twin domain expansion (after nucleation).

3.6 Full-Field CPFFT Model Framework

The FFT-based crystal plasticity-based models provide spatially resolved microme-
chanical fields in the individual crystals within polycrystals. The formulation
provides an exact solution of the governing equations of equilibrium and compat-
ibility, in such a way that the final (converged) equilibrated stress and compatible
strain fields fulfill the constitutive relationship at every discrete material point.

The original FFT formulation was developed to study the local and effective
mechanical response of linear elastic (Moulinec and Suquet 1994), nonlinear
elastoplastic (Moulinec and Suquet 1994, 1998), and visco-plastic (Michel et al.
2000, 2001) composite materials. The FFT formulation was later adapted for
polycrystalline materials and permitted the study of the effective and local responses
associated with the heterogeneity in the spatial distribution of crystallography
and directional dependence of mechanical properties (Lebensohn 2001). In recent
years, this FFT formulation has been extended to different deformation regimes
like elasticity (Brenner et al. 2009), incompressible visco-plasticity (Lebensohn
2001; Lebensohn et al. 2008), dilatational visco-plasticity (Lebensohn et al. 2011b),
infinitesimal elasto-visco-plasticity (Kanjarla et al. 2012b; Lebensohn et al. 2012)
and finite elasto-visco-plasticity (Eisenlohr et al. 2013). Below the CPFFT model
that allows for the crystals to deform by infinitesimal elasto-visco-plasticity (EVP)
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is briefly described and applied in later examples to study stress fluctuations in a
deformed polycrystal and local stress states generated around discrete twins.

In the CPFFT method, the solution of an EVP problem involves the adoption of
an appropriate time discretization scheme. Using an Euler implicit time discretiza-
tion and Hooke’s law, the expression for the stress in material point x at t + �t is
given by:

σ t+�t (x) = C (x) : εe,t+�t (x) = C (x) : (
εt+�t (x) − εp,t (x) − ε̇p,t+�t (x) �t

)

(6)

where σ(x) is the Cauchy stress tensor; C(x) is the elastic stiffness tensor; ε(x),
εe(x), and εp(x) are the total, elastic, and plastic strain tensors; and ε̇p(x) is the
plastic strain-rate tensor given in Eq. (1). The CPFFT model solves the equilibrium
equation along with the above constitutive equation by iteratively adjusting the
compatible strain field at every material point. The spatially resolved local response
is calculated using the convolution integral between the Green’s function associated
with the displacement field of a linear reference homogeneous medium and a
polarization field in which the heterogeneity and nonlinearity of the problem is
specified. Application of Fourier transforms reduces the convolution integrals of the
equilibrium equation in real space into simple products in Fourier space. Specifically
the FFT algorithm transforms the polarization fields of the periodic microstructures,
which are functions of the unknown strain field, into Fourier space, to obtain the
micromechanical responses in real space.

3.7 Twinning Model in CPFFT Framework

Up to now, advancing CP models for discrete twins with a 3D microstructure has
been hindered by the lack of 3D microstructural representation codes. Very recently,
a few full-field, spatially resolved polycrystal models, such as CPFFT and CPFEM,
have been advanced to include discrete twin domains within individual grains
(Abdolvand and Daymond 2013a, b; Abdolvand et al. 2011, 2015b; Abdolvand and
Wilkinson 2016; Ardeljan et al. 2015). To model the twin domain, the boundary
of the domain, the twinning orientation, and the characteristic twin shear needs to
be imposed homogeneously throughout the domain. A few examples of the local
stress fields calculated around twins in Zr and uranium (U) with these techniques
are shown in Fig. 7 (Abdolvand and Wilkinson 2016; Ardeljan et al. 2015). An
important aspect captured is the heterogeneous stress field within crystals that result
from the twin. The character, intensity, and extent of these fields depend sensitively
on the elastic and plastic properties of the material. Recently a series of studies were
undertaken to understand how response of the surrounding crystal could impact
the mesoscopic processes of twinning (Abdolvand et al. 2018; Kumar et al. 2015,
2016a, b, c, 2017b).
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Uranium Zirconiuma b

Before twinning After twinning Before twinningRSSTW
1.00
0.92
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0.08
0.00
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11

+1.643e+03
+7.000e+02
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+2.333e+02
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-7.000e+02

Fig. 7 Examples of recent modeling efforts in which discrete twin lamellae have been included
within a full-field spatially resolved technique. The two shown are crystal plasticity finite element
(CPFEM) models for (a) uranium (Ardeljan et al. 2015) and (b) zirconium (Abdolvand and
Wilkinson 2016)

In this section, the recent extension of the CPFFT formulation to account for the
reorientation and twinning shear transformation in discrete regions within a crystal
is described. In this model, deformation twinning is treated as a shear transformation
process. Accordingly the constitutive behavior of an elastic-visco-plastic material
under an infinitesimal strain approximation with shear transformation becomes:

σt+�t (x) = C (x) : (
εt+�t (x) − εp,t (x) − ε̇p,t+�t (x) �t − εtr,t (x) − �εtr,t+�t(x)

)

(7)

where εtr is the transformation strain. During the buildup of the twinning transfor-
mation, successive shear increments are imposed in the twin domain and the system
relaxed. The associated strain increments have the following relationship with the
local twin variant at point x:

�εtr (x) = mtw (x) �γ tw (x) (8)

For material points lying outside the twin domain, �εtr(x) is zero. The tensor
mtw = 1

2

(
btw ⊗ ntw + ntw ⊗ btw

)
is the Schmid tensor associated with the

twinning system, where btw and ntw are unit vectors along the twinning direction
and twin plane normal, respectively. The twinning transformation builds up in
increments, until reaching the characteristic twin shear, stw:
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�γ tw (x) = stw

Ntwincr (9)

The time increment �t and the number of increments to achieve the twin
transformation Ntwincr are set sufficiently low and high, respectively, to ensure
convergence.

4 Stochastic Twin Nucleation Model

4.1 Probability Model for Critical Stresses for Twin Formation

In a few recent works (Beyerlein et al. 2011; Beyerlein and Tome 2010; Niezgoda
et al. 2014), an approach was developed to include grain boundary-induced twin
nucleation into constitutive laws for application into the mean-field crystal plasticity
models, like VPSC with a twin reorientation scheme. Unlike conventional polycrys-
tal models to date, the model they used for twin nucleation is not deterministic
but probabilistic, dictated by the likelihood of forming a twin embryo in the
grain boundaries. The approach involves incorporating two aspects of the grain
boundaries in a bulk average probabilistic sense. One aspect is a probability model
for the nucleation of twins when some numbers of grain boundary defects undergo
stress-driven transformations, which then coalesce into a single stable nucleus. It
assumes that the time scale of the transformation and subsequent coalescence is
instantaneous compared to the applied deformation and introduces a characteristic
length scale, within which a critical number of transformations occur to produce a
propagating twin. The stochastic model gives an explicit form for the probability
distribution for the critical stress values required for twin nucleation that could be
used in the VPSC model for activating twinning.

The other aspect concerns the stresses that activate twinning. These stresses are
those that are generated at grain boundaries, and these tend to deviate significantly
from the average stresses calculated in VPSC for each grain. To tackle this,
distributions of grain boundary stresses were obtained from separate full-field CP
calculations. Taken together the VPSC model simulations of deformation were
advanced to activate twinning when randomly sampled critical twin stresses were
exceeded by randomly sampled grain boundary stresses.

In this section, the model is briefly reviewed. Consider a grain within a
polycrystal as illustrated in Fig. 8. It has nf nearest neighbors and is joined to
each neighbor k (k = 1, . . . nf) by a common grain boundary facet of area Ak.
Connecting these facets is a network of triple lines and quadruple points, which
generally have an atomic structure distinct from those of the facets.

A grain boundary area Ak contains defects, or grain boundary dislocations
(GBDs), varying spatially and temporally in defect content (e.g., size of the Burgers
vector). When provided a sufficiently high stress for a GBD of a given size, GBDs
can transform into a twin embryo, a process observed in atomistic simulation to
involve the reshuffling of the atoms into the twinned structure (Wang et al. 2013b).
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Fig. 8 Illustration of a grain
in a polycrystal with the
neighboring grains not shown
(Beyerlein and Tome 2010).
The boundary of the grain is
comprised of a network of
facets (with area a*), triple
lines, and quadruple points

Neighboring smaller twin nuclei can coalesce into a larger twin embryo. If the
embryo reaches a critical size, it will propagate into the crystal (Beyerlein and Tome
2010).

According to this physical picture, forming an embryonic twin relies on the right
stress fluctuation simultaneously hitting the right-sized defect. This confluence of
events is more likely to occur in the grain boundaries, where local stress states
and defect content are high. It is usually the case that the spatial distribution of
GBDs and stresses are heterogeneous, a GBD-to-twin nucleus transformation is a
statistically occurring event, and the number of such events N is a random variable.
The number N is expected to increase as the area Ak of the facet and the magnitude
of the stresses acting on the boundary increase.

In the model, a stochastic counting process is proposed for N, i.e., {N(Ak), Ak
≥ 0}, where N(Ak) is the number of transformation events that occurred in an area
Ak. If each event is independent and identically distributed (i.i.d.), and the number
of events in nonoverlapping elements is independent (stationary increments), then
the Poisson process emerges as an appropriate model. Accordingly, the probability
that N = m defects will be transformed into a twin nucleus within a given area
Ak = a follows a Poisson distribution:

P (N = m, a) = (λa)m

m! exp (−λa) (10)

where λ is the rate of the process. The parameter λ also corresponds to the expected
number of transformation events per unit area. Another consequence of the Poisson
model is that the events are uniformly distributed over area a, and spatial separation
between transformation events is exponentially distributed. As the process is driven
by stress, the Poisson rate λ is assumed a monotonically increasing function of the
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resolved shear stress (τ) on a twin system s. For convenience, the following power
law formulation is introduced:

λ (τ) = 1

a0

(
τ

τ0

)α

(11)

where a0 is a material parameter assumed to be constant, and τ0 is a characteristic
scalar stress value, which is interpreted as the stress required to dissociate, on
average, one grain boundary dislocation on area a0. Parameters a0 and τ0 are, in
principle, functions of the defect content of the grain boundary. Therefore, they may
vary from boundary to boundary and differ, for instance, for a coherent boundary
versus an incoherent one.

To implement the above model into a computational mechanics code, the discrete
counting of the number of transformation events needs to be linked to a continuous
probability of forming a twin nucleus. To this end, a characteristic area ac is
introduced as the minimum area that can produce one twin, i.e., one characteristic
area ac produces one crystalline twin, which may have resulted from the coalescence
of n tinier twin nuclei created by n transformation events. Suppose that at least m*
distinct conversion events need to occur within ac in order to form one twin, then
the probability that at least m* events occur in ac is:

P
(
N ≥ m∗, ac

) = 1 −
m∗−1∑

m=1

P(N = m, ac) (12)

Further, we assume that m* = 1, that is, at least one defect must be activated
within ac, which yields the following Weibull distribution.

P(S < τ) = P(N ≥ 1, ac) = 1 − exp

(
−

(
τ

τc

)α)
(13)

Using Eqs. (12) and (13), we can redefine P(S < τ) as the probability that the
critical stress to nucleate a twin is less than or equal to τ. Here S is a random variable
that quantifies the critical nucleation strength or equivalently the stress required
to transform an appropriate number of grain boundary dislocations into twinning
dislocations.

The area ac is an important model length scale, where in all dissociation events
in ac lead to one twin. Accordingly, it sets the minimum twin spacing and the
maximum number of twin lamellae that can form from a grain boundary of area
Ak as n* = Ak/ac. The material parameter α governs the dispersion in S and is
linked to the type of defects in the grain boundary.
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4.2 Statistical Representations of Grain Structures

The above model applies to twinning from one-grain boundary facet of area Ak.
Multiple grain neighbors in fact surround any given grain, and each neighbor shares
just one of the many facets that comprise a grain’s boundary.

Recall from Sect. 4.1 that in a given grain facet Ak, there are n* number
of potential sites to form a twin. Correspondingly, following Eq. (13), there is
a set of n* critical stresses Si, i = 1, . . . n*, assumed to be independent and
identically distributed. In order to assign the number of potential nucleation sites
n* for each grain, the three-dimensional grain structure is needed. At a minimum,
the microstructural parameters needed are (1) the number of neighbors (nk) or
number of grain boundary facets of a grain and (2) the surface area of the grain
boundary facets Ak from which the twins will nucleate. These parameters depend
on the grain size distribution and the morphology of the grains in the sample and
can in principle be estimated from a combination of microscopy and some basic
stereological principles.

When the computational model is a mean-field model, like VPSC, every grain
is modeled as an ellipsoidal inclusion. Thus estimates are needed for the lattice
orientation, effective radius (or equivalently volume), and the ratio between major
and minor axes of the grains. For this purpose, the stochastic field model of
Thorvaldsen (1993) is adopted. Using simple geometric arguments, this model
develops an expression for the distribution of neighbors for a given grain and the
distribution of facet areas depending on its size, R, and shape. According to this
model, for a spherical grain with radius R, the expected number of grain neighbors
nf, E(nf), is related to the expected value of R, E(R) according to:

E (nf) = 4

(
1 + R

E(R)

)2

(14)

Given a neighboring grain with radius Rn, the contact area, Ak, is given by
(Thorvaldsen 1993):

1

Ak

= 1

π

(
1

Rn

+ 1

R

)2

(15)

To demonstrate, the mode is applied to high-purity HCP Zr. Figure 9 shows
the distribution of grain size (Capolungo et al. 2009), the predicted distribution for
the number of neighboring grains or facets, and the predicted distribution of grain
facet areas for Zr. The equivalent circle radius exhibits an approximate Rayleigh
distribution. Accordingly, the cross-sectional grain areas will be exponentially
distributed. The expected number of neighbors for this grain size distribution is 17,
indicating a wide range of grain sizes in the Zr aggregate being modeled.
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Fig. 9 Microstructural variations considered in the stochastic twin nucleation model: (a) grain
size, (b) number of grain boundary facets, and (c) grain boundary facet area (Niezgoda et al. 2014).
These microstructural distributions are obtained from the EBSD-based statistical analysis of pure
Zr (Capolungo et al. 2009)

4.3 Spatially Resolved Stress States in Deforming 3D Polycrystals

This critical stress τc can then be compared to the twin-plane resolved shear stress
(TRSS) for the twin variant in question. If it exceeds the TRSS, then a twin embryo
may nucleate, and if not, then the region remains un-twinned. For twinning, the
local stress state in the region in question for twinning is desired. Self-consistent
schemes can be used to calculate the local stress state in the grain. However the
formulation does not allow for calculation of the stress state in the boundaries. Also
by modeling each grain as an ellipsoid in a homogeneous medium, the scheme does
not provide a way of defining the orientation of the grain boundary with respect
to the loading direction. Full-field, spatially resolved techniques such as CPFFT
or CPFE, however, are particularly well suited for calculating stress distributions
within grains and in grain boundaries and triple and quadruple points. From this
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model, the stress fluctuation distributions, the deviation in stress from the average
value, can be calculated and amenable for use in a mean-field technique.

Following this approach, CPFFT calculations are carried out on Zr. Several
(100) realizations of 3D grain structures of representative Zr material volumes
were performed to extract the stress fluctuations at grain boundaries (Kanjarla et
al. 2012a; Niezgoda et al. 2013). The three-dimensional (3D) representative volume
elements, RVEs, were created using DREAM-3D. Each RVE contained 500 ± 50
grains with ∼5 × 105 grain boundary voxels or elements per RVE. For each
representative volume, simulations of multiple loading conditions were performed.
The deviations from the grain-averaged stress at the grain boundaries were extracted
for all representative volumes for each loading condition.

For one example RVE, Fig. 10a shows calculated stress fluctuations, defined as
deviations in the Von-Mises effective stress from the grain average stress, at 2.5%
applied strain. This result reveals significant deviations at the grain boundaries. It is
not uncommon for single grains to have regions near their boundaries that deviate
in both a highly compressive and tensile state from the grain average. Figure 10b
presents the observed deviations in the normal stress components from the grain
stress. By averaging over multiple loading conditions, the fluctuations on all three
normal components had approximately the same distribution, as did the three
shear stress components. As shown, the distributions are approximately Gaussian;
however, the extreme tails of the distributions extend significantly farther than would
be expected from a perfect Gaussian. For VPSC deformation simulations, a six-
dimensional Gaussian with a zero mean vector was used to reasonably represent the
CPFFT calculations.

4.4 Incorporation of Statistical Stress and Strength Distributions
in Homogenization Models

Carrying out the simulation with the probability model for twinning added, the
VPSC model needs as input the distribution for the twin nucleation stresses
and stress fluctuations. Figure 10c shows the former, the twin nucleation stress
distribution for ac = 0.01 μm2, α = 11.1, and τc = 310 MPa. The latter stress
fluctuations, just described in the prior section, are provided in Fig. 10b. In an actual
polycrystal, grain boundary misorientations are distributed, and their defect states
vary, and in deformation, both can vary in time. However, for simplicity, the same
Gaussian representation for the stress fluctuation distribution is applied for all grain
boundaries at all times during deformation.

The procedure used is described as follows. The calculation begins with a
description of the microstructure. The input texture for VPSC is constructed by
sampling 8500 grains from the EBSD maps produced by Capolungo et al. (2009).
The equivalent circle diameter from the EBSD is used to assign the weight or grain
size for each grain (Fig. 9a). For each grain, Eq. (14) is used to determine the number
of neighbors. The neighbors are randomly sampled from the input texture, and Eq.
(15) is used to assign facet areas Ak. Each facet is then divided into n* areas of
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Fig. 10 Mechanical stress fluctuations as calculated in the CPFFT model: (a) the deviations in
the effective stress from the grain average stress. The FFT model contains 522 grains (Niezgoda
et al. 2013). (b) Distribution of the CPFFT calculated stress fluctuations from 100 different
representative volume elements like those in (a) (Niezgoda et al. 2013). (c) Separately, the
probabilistic nucleation model provides the probability distribution for the critical stress to form a
twin (Niezgoda et al. 2014)

size ac. Each of these areas is a potential nucleation site for a twin of variant v. For
each site, at each strain increment, Eq. (13) is used to test for the nucleation of twin
variant v, which requires knowing the resolved shear stress τ(v) projected on the
twin variant v. To calculate τ(v), a stress fluctuation �σ is randomly sampled from
the characteristic distribution (Fig. 10) for each variant and is added to the grain
stress calculated at that strain increment. The sum is then projected onto the twin
system to compute τ(v). This procedure for nucleation is then repeated for every
twin variant at each site. In the case that multiple twin variants could nucleate from
the same site, a single variant is selected at random to propagate. Each nucleation
site is tested independently for nucleation, with no correlation with the neighboring
sites. Although nucleation could occur on more than one facet belonging to a grain,
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in these example calculations, one facet for each grain is randomly chosen as the
one from which twins are allowed to grow. Using the above procedure, any variant
could nucleate, not just the one with the highest τ(v). Once a grain forms twins,
no further nucleation is allowed. Twin growth follows a deterministic stress-based
criterion, Eq. (5).

Using the above model, the deformation response of HCP Zr at three different
temperatures, liquid nitrogen (77 K), 150 K, and room temperature (300 K)
is simulated. In this calculation plastic deformation of Zr is accommodated by
prismatic <a> slip and pyramidal <c + a> slip and

{
1012

}
tensile and

{
1122

}

compression twins. The evolution of the critical resolved shear stresses for only
the slip modes follows the dislocation density-based hardening model developed
in Beyerlein and Tome (2008). The same twin nucleation stress distribution is
used at all temperatures, while the effect of temperature is included in the initial
CRSS and the dislocation density evolution rate for slip. Figure 11a compares the
model-predicted stress-strain curves at 76 K, 150 K, and 300 K under in-plane
compression with the experimental curves for Zr. As shown, good agreement in the
calculated flow stresses and hardening rates for all temperatures tested is achieved.
Although not shown, the model also predicts well the experimentally observed
texture evolution (Fig. 6 of Niezgoda et al. 2014)) and twin volume fraction
evolution (Fig. 8 of (Niezgoda et al. 2014)). For completeness, the calculated twin
volume fraction at 5% and 10% compression for 76 K temperature loading is 4%
and 16%, respectively, which agrees well with the measured fraction from EBSD
images is 5% and 16%, respectively.

The importance of the stochastic twin nucleation model cannot be fully appreci-
ated from analyzing average responses. The model results can also be compared to
local, microstructure data distributions of twinning. Figure 11b compares the calcu-
lated number fraction of twins with a given Schmid factor after 10% compression at
76 K with the experimentally measured number distribution of the observed twins
at the same strain from EBSD. Like the measurement, the calculated frequency is
also broad, including twins with high Schmid factors and with low Schmid factors
(m < 0.3). Figure 11c compares the model predicted frequency distribution of each
twin variants with that from EBSD. The model finds that the twin variant selected is
most likely (but not always) the one with the highest geometric Schmid factor and
that the grains that twin are most often (but not always) well oriented for twinning,
again, in agreement with the measurement. EBSD analysis indicates that only 50–
60% of the twins correspond to the twin variant with the highest SF, i.e., v-1, and
20% to the second highest SF variant, v-2. Remaining ∼20% of twins are the third
and fourth highest SF variants.

The model overall predicts well the macroscopic deformation response because
it predicts at the mesoscopic scale the formation of a broad range of twin variants
over a broad straining period. In contrast, the model employing a deterministic twin
nucleation approach, using a constant CRSS for all twins, predicts that ∼95% of
the twins activated are v-1 and the remaining ∼5% are v-2. Lower ranked SF twin
variants are not activated. The combined analysis of experiment and model results
provides evidence that twin formation in polycrystalline materials is stochastic.
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Fig. 11 Comparison of results from the VPSC model, with the twin nucleation model incorpo-
rated, for the (a) stress-strain response, (b) twinning frequency as a function of Schmid factor, and
(c) twin number fraction for different twin variants at 10% compression. In (c), the frequency of
twin variants formed as predicted from the polycrystal VPSC model with and without the stochastic
twin model are compared. Without it, the criterion for forming a twin is deterministic. As shown,
better agreement with the EBSD data is achieved with stochastic twin formation implemented
(Niezgoda et al. 2014)

5 Stochastic Twin Growth Model

The earlier sections in this chapter discussed twin formation, as being derived
from reactions involving intense localized stress and dissociations of individual or
groups of discrete dislocations. The remaining sections of this chapter focus on the
thickening of the twin band. In this stage, the dimensions of the twin domain lie
above the atomic scale, being approximately submicron or micron and closer to
the dimensions of the parent grain. The stress fields surrounding twin domains of
this size range develop as a result of elastic and plastic deformation. The latter is
carried by the collective glide of dislocations and can be adequately modeled at this
scale by crystallographic slip. Accordingly, to study the effects of slip and crystal
orientation on these two stages of deformation twinning, we employ a full-field,
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spatially resolved technique, the CPFFT model, which permits calculation of the
mechanical fields (stress, strain, strain rate) in the presence of discrete twin domains
within crystals. In the examples that follow, the model is applied to

{
1012

}
tensile

twins in HCP Mg and Zr metals. The anisotropic elastic constants (in GPa) for
Mg at room temperature are 59.75, 23.24, 21.70, 61.70, and 16.39 (Hearmon 1946;
Simmons and Wang 1971) and for Zr at 77 K are 143.50, 72.50, 65.40, 164.90, and
32.10 (Fisher and Renken 1964; Simmons and Wang 1971). Plastic deformation
is accommodated by basal <a>, prismatic <a>, and pyramidal <c + a> slip for
both HCP Mg and Zr metals. The critical resolved shear stress (CRSS) for basal,
prismatic, and pyramidal slip systems (in MPa) are 3.3, 35.7, and 86.2, respectively,
for Mg at room temperature (Beyerlein et al. 2011), and 700.0, 20.0, and 160.0,
respectively, for Zr at 77 K (Knezevic et al. 2015).

5.1 Local Twin Boundary Stresses to Expand Twin

As mentioned earlier, twins most often nucleate at a grain boundary and propagate
across the grain until they are stopped at the opposing grain boundary. They thicken
further after having terminated at grain boundaries. Both the surrounding parent and
neighboring grains deform in order to accommodate the shear strains resulting from
the growing twin. To investigate the driving forces for twin growth, it is important to
understand the local stresses generated around the twin band. To this end, consider
a tri-crystal of three neighboring grains embedded in a polycrystal, as shown in
Fig. 12. The central grain contains the deformation twin, which spans the width
and intersects with the two neighboring crystals. The parent grain orientation is
(0◦,0◦,0◦), (Bunge convention), which corresponds to alignment of its c-axis with
the Z-direction.

Using CPFFT model, the stress and elastic and plastic strain tensorial fields are
calculated, and for analysis, the TRSS field is presented in Fig. 12b after twinning.
In this example, the neighboring grain orientation is (0◦, 30◦,0◦) and the material
is Zr. The stress inside the twin domain and along the lateral sides of the twins
is negative, and in the neighboring grains, it is positive. Note that before the twin
was present, the stress state was nearly uniform in the crystal, but when the twin is
present, the stress state remains homogeneous in the twin domain but has become
nonuniform, particularly in the matrix region immediately bordering twin. For more
details, the TRSS distribution along the twin after twinning is given in Fig. 12c. The
TRSS along the lateral interface of the twin band is negative, signifying that the
negative TRSS along the twin boundary acts in the anti-twinning direction and thus
serves as a resistance to further twinning. More quantitatively, a twin backstress
field can be defined as the difference in the TRSS before and after twinning. The
backstress is highest in value at each end, where the twin shear and reaction from
the neighboring grain is the greatest and decays toward the middle of the twin. The
backstress is the least at the middle of the twin. To migrate the boundaries, the
applied load would need to be increased further such that the local TRSS along
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Tri-crystal setup TRSS distribution after twinning 

TRSS profile along twin boundary 

a b

c

Fig. 12 CPFFT calculated twin stress distributions generated by a twin lamella in Zr (Kumar
et al. 2016a). (a) Tri-crystal setup consisting of a central grain “grain-1” containing a twin and
two neighboring grains, with the same orientation on each side. Orientations of grain-1 and grain-
2 are (0◦, 0◦, 0◦) and (0◦,30◦,0◦), respectively. (b) The twin-plane resolved shear stress (TRSS)
distribution after twinning and (c) TRSS profile along twin boundary before and after twinning

the twin becomes positive and exceeds a threshold value associated with boundary
migration.

The amount of twin backstress observed here depends on the ability of the
neighboring grain to accommodate the shear imposed by the twin. These grains
deform elastically and plastically, and in the latter case, the plastic accommodation
generally involves slip on multiple slip systems. For an HCP material, the activation
barriers for slip depend on the mode of slip and typically include basal <a> slip,
prismatic <a> slip, and pyramidal <c + a> slip. In the case of Mg, the easiest basal
<a> slip ( 3 MPa) only provides two independent slip systems. Thus, basal slip alone
would be insufficient to accommodate a general stress state, and in general the next
easiest prismatic <a> slip and/or hardest pyramidal <c + a> slip would also have to
be activated at the twin/grain boundary junction. A neighboring grain well oriented
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to accommodate the shearing action of the twin mostly with its easy slip system
would be considered a “plastically soft” neighbor. Less backstress would result in
the twin domain, particularly along the twin boundary. In contrast, a neighboring
grain that is oriented poorly for easy slip must activate relatively large amounts of
the harder slip modes in order to accommodate the shearing of the twin. It would
constitute a “plastically hard” neighbor. A higher backstress in the twin would result
and more applied load would be required to grow the twin. The grain neighbor
orientation effect could be one explanation for why in a polycrystal some grains
twin and others do not, despite being of similar size and orientation (Beyerlein et al.
2010; Capolungo et al. 2009; Kumar et al. 2018).

5.2 Grain Neighborhood Effects on Stresses to Expand the Twin

In this section, we study the effect of neighboring grain orientation on the twin back-
stress and twin expansion. The EVP-FFT-based twinning simulations are performed
for 221 different grain orientations that represent the entire orientation space of
neighboring grains for a fixed parent grain orientation and twin type and variant. The
neighboring grain orientation space is represented in the φ versus φ1 plot, the two
angles denoting the in-plane rotation and c-axis misorientation, respectively (Kumar
et al. 2017b). Maps for Mg and Zr are given in Fig. 13a, b. The landscapes are very
different for these two materials. The magnitudes and anisotropy in the backstress
are much higher for Zr than Mg. In the case of Mg, the backstress is particularly low
(∼22 MPa) for the neighboring grain when the c-axis misorientation ranges from
0◦ to ∼25◦ and from ∼65◦ to 90◦, but slightly higher (∼25 MPa) for the c-axis
misorientation range from ∼25◦ to ∼65◦. In the case of Zr, the backstress is lower
(∼75 MPa) for the c-axis misorientation range from 0◦ to ∼45◦ and substantially
higher (∼105 MPa) for the c-axis misorientation range from ∼45◦ to 90◦.

Whether a grain neighbor is plastically hard and non-accommodating, leading
to a high backstress, or vice versa, plastically soft, leading to a low one depends
on the crystal’s ability to activate its easiest slip mode. For Zr, the easier modes
are prismatic slip and tensile twinning, and these require higher CRSS values than,
say, Mg, for which the easiest one is basal slip and the CRSS value to activate it is
comparatively low. The backstress can be correlated to grain neighbor orientation
through its ability to activate its easiest slip or twin mode. A simple metric that
quantifies alignment between the twin in the parent and a given slip mode in the
neighbor is:

mrel = max ((bT .bs) (nT .ns)) (16)

where bT and nT are the Burgers vector and plane normal unit vector of the twin
and bs and ns are the Burgers vector and plane normal unit vector of different slip
systems of neighboring grain.

This relative neighboring grain orientation factor mrel ranges from 0 to 1 and
can be set as the maximum value calculated among the systems belonging to the
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Fig. 13 Effect of neighboring grain orientation on twin backstress (Kumar et al. 2017b).
Distribution of twin backstress in the neighboring grain orientation space in (a) Mg and (b) Zr.
The correlation between the twin backstress and the relative orientation of primary slip system in
(c) Mg and (d) Zr. In the calculations, easy basal slip systems in Mg and easy prismatic slip and
tensile twin systems in Zr are shown, and the less active systems are not shown

slip family. A high mrel means that the particular deformation mode is well aligned
with the twin and the likely one accommodating the twin shear. Similar measures
have been defined to quantify crystallographic alignment across boundaries but
for different purposes, such as slip-slip transmission (Clark et al. 1992), slip-twin
transmission (Wang et al. 2010b), and twin-twin transmissions (Kumar et al. 2016a,
2017a, c) across grain boundaries.

The relationships between mrel for the different deformation modes and the
calculated twin backstress from the CPFFT are obtained for both Mg and Zr.
For pure Mg, the relationship is studied between the twin in the parent and the
predominant basal slip mode in the neighbor. For Zr, the relationship is examined
for both prismatic slip and the tensile twin modes. It was found that the other
deformation modes are not strongly correlated with the backstress. Figure 13c shows
that for Mg, the twin backstress τB increases as mrel for basal slip decreases. In
the case of Zr, in Fig. 13d, the tensile twin mode exhibits the stronger correlation
with τB than prismatic slip. In particular, the correlation between τB and relative
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orientation of neighboring grain tensile twin mTTwin is nearly linear following (see
the line in Fig. 13d):

τB = −26.63 mT T win + 105.26 (17)

This relationship although simple can be used in mean-field polycrystal models
to indirectly account for neighborhood effects.

5.3 Incorporation of Neighborhood Effects in Homogenization
Models

To simulate the role of random neighboring grain orientations on the growth of twin
lamellae, the relationship expressed in Eq. (17) is incorporated into a larger scale,
mean-field visco-plastic self-consistent (VPSC) model. In this hybrid VPSC model
(Kumar et al. 2017b), the twin shear rate is related to the TRSS by a power-law flow
rule, which introduces a resistance to twinning:

γ̇ v = γ̇o

(
τv

τtwin
c + τB

)n

(18)

where n = 20, γ̇o is the reference shear rate, τv is the TRSS of twin variant v
calculated in VPSC without a neighbor effect, and τB is the contribution of the
neighboring constraint to the resistance, the backstress we analyzed earlier with the
CPFFT model.

This hybrid model is applied to polycrystalline Zr. In the simulation, for every
grain, a neighboring grain orientation is randomly selected from the initial texture.
Provided the grain forms a twin, its pre-assigned neighbor orientation is used to
calculate the backstress on the twin using Eq. (17). Studies of the twin thickness
distribution can be used to observe the effects of the neighbor on the backstress.
Figure 14 compares the distribution of twin area fraction per twinned grain as a
function of twin Schmid factor with the experimental measurement (see (Capolungo
et al. 2009)). The model including grain neighborhood effects on twin growth
reduces twinning in the high Schmid factor region yet increases it in the low
Schmid factor region, providing overall better alignment with the data than the
model without the effect of backstress. We find in the model that including the
backstress neighbor effect lowers the growth rate for all twins, which is to be
expected. However, in order to form the same twin fraction to accommodate the
applied strain as in the model without the backstress, the lower Schmid factor twins
grew to a larger volume, an interesting consequence that again, places the hybrid
model calculations in better alignment with the volume fraction of these low-rank
twins.
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Fig. 14 Effect of the twin backstress effect when incorporated into the VPSC model (Kumar et al.
2017b). Calculated twin area distribution from the deformation of pure Zr. Including the backstress
from neighboring grains reduces twinning in the high Schmid factor region and increases it in the
low Schmid factor region, aligning it better with the data than the mode without the effect of the
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6 Conclusions and Outlook

Decades of reports from experimental analyses of deformed HCP materials have
undeniably demonstrated that deformation twinning is a highly heterogeneous
deformation mechanism, exhibiting significant temporal and spatial variability
across the crystalline microstructures. Yet to date the fundamental understanding
of the mechanistic origins of the statistical and stochastic nature of these types
of twins is still in development. Considering both the growing interest in HCP
materials for structural applications and the profound influence of twinning on
structural response, adopting a stochastic perspective in the studies of deformation
twinning during mechanical deformation is sensible. In attempt to evaluate progress
toward this end, this chapter reviews recent experimental analyses and modeling
efforts to describe some statistical aspects of deformation twins, correlate the more
statistically variable features of twins with parent microstructure, and propose
the mechanisms that explain the observed microstructure/twin relationships. The
contribution of grain neighborhoods to the statistical variability, as quantified by
combining experimental and modeling methods, is highlighted. In addition, recent
developments of stochastic twin nucleation and growth models are presented, with
the aim to determine how these stochastic aspects of twinning impact mechanical
behavior. The general finding is that substantial variation in twin formation, variant
selection, and size significantly impacts mechanical response, from yield and
hardening to ultimate strength. These strongly suggest that future pursuits for
stochastic approaches to understanding the mechanical response of HCP materials
that deform via twinning are worthwhile.
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There are many other very important aspects of twinning that still require study
from a stochastic perspective that were not covered in this chapter. Commonly
seen in HCP materials, which twin profusely, are intragranular three-dimensional
networks of twins. Understanding on how these twin-twin junctions form and the
variation in the types of junctions that manifest would benefit from approaches
that adopt statistical descriptions and stochastic models incorporated in simulation.
It should also be noted that the mechanical properties reviewed in this work
pertained to responses obtained in simple loading states. Twinning microstructures
are, however, sensitive to deformation temperatures and imposed strain rates and
deformation histories. For instance, cyclic loading can induce phenomenon such
as detwinning, or changes in strain path can cause secondary twinning. There is
still much opportunity for investigating the stochastic aspects of these frequently
occurring twinning events.
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Kumar MA, Wroński M, McCabe RJ, Capolungo L, Wierzbanowski K, Tomé CN (2018) Role of
microstructure on twin nucleation and growth in HCP titanium: a statistical study. Acta Mater
148:123–132

Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using fast Fourier
transform. Acta Mater 49:2723–2737

Lebensohn RA, Tome CN (1993) A self-consistent anisotropic approach for the simulation of
plastic-deformation and texture development of polycrystals – application to zirconium alloys.
Acta Metall Mater 41:2611–2624. https://doi.org/10.1016/0956-7151(93)90130-K

Lebensohn RA, Brenner R, Castelnau O, Rollett AD (2008) Orientation image-based microme-
chanical modelling of subgrain texture evolution in polycrystalline copper. Acta Mater 56:3914–
3926. https://doi.org/10.1016/j.actamat.2008.04.016

Lebensohn RA, Castañeda PP, Brenner R, Castelnau O (2011a) Full-field vs. homogenization
methods to predict microstructure–property relations for polycrystalline materials. In: Ghosh S,
Dimiduk D (eds) Computational methods for microstructure-property relationships. Springer,
Boston

Lebensohn RA, Idiart MI, Castaneda PP, Vincent PG (2011b) Dilatational viscoplas-
ticity of polycrystalline solids with intergranular cavities. Philos Mag 91:3038–3067.
https://doi.org/10.1080/14786435.2011.561811

Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast
Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int
J Plast 32–33:59–69. https://doi.org/10.1016/j.ijplas.2011.12.005

Lentz M, Behringer A, Fahrenson C, Beyerlein IJ, Reimers W (2014) Grain size effects on primary,
secondary, and tertiary twin development in Mg-4 wt pct Li (-1 wt pct Al) alloys. Metall Mater
Trans A 45a:4737–4741. https://doi.org/10.1007/s11661-014-2491-y

Lentz M, Klaus M, Beyerlein IJ, Zecevic M, Reimers W, Knezevic M (2015) In situ X-
ray diffraction and crystal plasticity modeling of the deformation behavior of extruded
Mg-Li-(Al) alloys: an uncommon tension-compression asymmetry. Acta Mater 86:254–268.
https://doi.org/10.1016/j.actamat.2014.12.003

Lentz M, Risse M, Schaefer N, Reimers W, Beyerlein IJ (2016) Strength and ductility with
{10(1)over-bar1} – {10(1)over-bar2} double twinning in a magnesium alloy. Nat Commun 7.
https://doi.org/10.1038/ncomms11068. ARTN 11068

Liu B, Raabe D, Roters F, Eisenlohr P, Lebensohn RA (2010) Comparison of finite element and
fast Fourier transform crystal plasticity solvers for texture prediction. Model Simul Mater Sci
18. https://doi.org/10.1088/0965-0393/18/8/085005. Artn 085005

Liu X, Nuhfer NT, Warren AP, Coffey KR, Rohrer GS, Barmak K (2015) Grain size dependence of
the twin length fraction in nanocrystalline Cu thin films via transmission electron microscopy
based orientation mapping. J Mater Res 30:528–537. https://doi.org/10.1557/jmr.2014.393

Mahajan S, Chin GY (1973) Formation of deformation twins in Fcc crystals. Acta Metall Mater
21:1353–1363. https://doi.org/10.1016/0001-6160(73)90085-0

Masson R, Bornert M, Suquet P, Zaoui A (2000) An affine formulation for the prediction of the
effective properties of nonlinear composites and polycrystals. J Mech Phys Solids 48:1203–
1227. https://doi.org/10.1016/S0022-5096(99)00071-X

McCabe RJ, Proust G, Cerreta EK, Misra A (2009) Quantitative analysis of deformation twinning
in zirconium. Int J Plast 25:454–472. https://doi.org/10.1016/j.ijplas.2008.03.010

Mendelson S (1972) Dislocation dissociations and dislocation mobility in diamond lattice crystals.
J Appl Phys 43:2102. https://doi.org/10.1063/1.1661460

Michel J, Moulinec H, Suquet P (2000) A computational method based on augmented Lagrangians
and fast Fourier transforms for composites with high contrast. Comput Model Eng Sci 1:79–88

Michel J, Moulinec H, Suquet P (2001) A computational scheme for linear and non-
linear composites with arbitrary phase contrast. Int J Numer Methods Eng 52:139–158.
https://doi.org/10.1002/nme.275

https://doi.org/10.1016/j.jallcom.2016.10.287
https://doi.org/10.1016/0956-7151(93)90130-K
https://doi.org/10.1016/j.actamat.2008.04.016
https://doi.org/10.1080/14786435.2011.561811
https://doi.org/10.1016/j.ijplas.2011.12.005
https://doi.org/10.1007/s11661-014-2491-y
https://doi.org/10.1016/j.actamat.2014.12.003
https://doi.org/10.1038/ncomms11068
https://doi.org/10.1088/0965-0393/18/8/085005
https://doi.org/10.1557/jmr.2014.393
https://doi.org/10.1016/0001-6160(73)90085-0
https://doi.org/10.1016/S0022-5096(99)00071-X
https://doi.org/10.1016/j.ijplas.2008.03.010
https://doi.org/10.1063/1.1661460
https://doi.org/10.1002/nme.275


The Stochastic Nature of Deformation Twinning: Application to HCP Materials 37

Mika D, Dawson P (1999) Polycrystal plasticity modeling of intracrystalline boundary textures.
Acta Mater 47:1355–1369. https://doi.org/10.1016/S1359-6454(98)00386-3

Morrow BM, Cerreta EK, McCabe RJ, Tome CN (2014a) Toward understanding twin-twin interac-
tions in hcp metals: utilizing multiscale techniques to characterize deformation mechanisms in
magnesium. Mater Sci Eng A-Struct 613:365–371. https://doi.org/10.1016/j.msea.2014.06.062

Morrow BM, Mccabe RJ, Cerreta EK, Tome CN (2014b) In-situ TEM observation of twin-
ning and detwinning during cyclic loading in Mg. Metall Mater Trans A 45a:36–40.
https://doi.org/10.1007/s11661-013-1765-0

Morrow BM, McCabe RJ, Cerreta EK, Tome CN (2014c) Observations of the atomic structure of
tensile and compressive twin boundaries and twin-twin interactions in zirconium. Metall Mater
Trans A 45a:5891–5897. https://doi.org/10.1007/s11661-014-2481-0

Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear
mechanical properties of composites. C R Acad Sci Ser II 318:1417–1423

Moulinec H, Suquet P (1998) A numerical method for computing the overall response of
nonlinear composites with complex microstructure. Comput Method Appl Mech 157:69–94.
https://doi.org/10.1016/S0045-7825(97)00218-1

Niezgoda SR, Beyerlein IJ, Kanjarla AK, Tome CN (2013) Introducing grain
boundary influenced stochastic effects into constitutive models. Jom-Us 65:419–430.
https://doi.org/10.1007/s11837-012-0550-7

Niezgoda SR, Kanjarla AK, Beyerlein IJ, Tome CN (2014) Stochastic modeling of twin nucleation
in polycrystals: an application in hexagonal close-packed metals. Int J Plast 56:119–138.
https://doi.org/10.1016/j.ijplas.2013.11.005

Partridge PG (1967) The crystallography and deformation modes of hexagonal close-packed
metals. Metall Rev 12:169–194

Peirce D, Asaro RJ, Needleman A (1982) An analysis of nonuniform and
localized deformation in ductile single-crystals. Acta Metall Mater 30:1087–1119.
https://doi.org/10.1016/0001-6160(82)90005-0

Priestner R, Leslie WC (1965) Nucleation of deformation twins at slip plane intersections in Bcc
metals. Philos Mag 11:895–916. https://doi.org/10.1080/14786436508223953

Proust G, Tome CN, Kaschner GC (2007) Modeling texture, twinning and harden-
ing evolution during deformation of hexagonal materials. Acta Mater 55:2137–2148.
https://doi.org/10.1016/j.actamat.2006.11.017

Proust G, Tome CN, Jain A, Agnew SR (2009) Modeling the effect of twinning and
detwinning during strain-path changes of magnesium alloy AZ31. Int J Plast 25:861–880.
https://doi.org/10.1016/j.ijplas.2008.05.005

Rahman KM, Vorontsov VA, Dye D (2015) The effect of grain size on the twin initiation stress in
a TWIP steel. Acta Mater 89:247–257. https://doi.org/10.1016/j.actamat.2015.02.008

Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview
of constitutive laws, kinematics, homogenization and multiscale methods in crystal plas-
ticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211.
https://doi.org/10.1016/j.actamat.2009.10.058

Salem AA, Kalidindi SR, Doherty RD, Semiatin SL (2006) Strain hardening due to defor-
mation twinning in alpha-titanium: Mechanisms. Metall Mater Trans A 37a:259–268.
https://doi.org/10.1007/s11661-006-0171-2

Shanthraj P, Eisenlohr P, Diehl M, Roters F (2015) Numerically robust spectral meth-
ods for crystal plasticity simulations of heterogeneous materials. Int J Plast 66:31–45.
https://doi.org/10.1016/j.ijplas.2014.02.006

Shi ZZ et al (2015a) On the selection of extension twin variants with low Schmid factors in a
deformed Mg alloy. Acta Mater 83:17–28. https://doi.org/10.1016/j.actamat.2014.10.004

Shi ZZ et al (2015b) Variant selection of twins with low Schmid factors in cross
grain boundary twin pairs in a magnesium alloy. Iop Conf Ser-Mat Sci 82.
https://doi.org/10.1088/1757-899x/82/1/012021. Artn 012021

https://doi.org/10.1016/S1359-6454(98)00386-3
https://doi.org/10.1016/j.msea.2014.06.062
https://doi.org/10.1007/s11661-013-1765-0
https://doi.org/10.1007/s11661-014-2481-0
https://doi.org/10.1016/S0045-7825(97)00218-1
https://doi.org/10.1007/s11837-012-0550-7
https://doi.org/10.1016/j.ijplas.2013.11.005
https://doi.org/10.1016/0001-6160(82)90005-0
https://doi.org/10.1080/14786436508223953
https://doi.org/10.1016/j.actamat.2006.11.017
https://doi.org/10.1016/j.ijplas.2008.05.005
https://doi.org/10.1016/j.actamat.2015.02.008
https://doi.org/10.1016/j.actamat.2009.10.058
https://doi.org/10.1007/s11661-006-0171-2
https://doi.org/10.1016/j.ijplas.2014.02.006
https://doi.org/10.1016/j.actamat.2014.10.004
https://doi.org/10.1088/1757-899x/82/1/012021


38 I. J. Beyerlein and M. Arul Kumar

Shi ZZ et al (2015c) Sequential double extension twinning in a magnesium alloy:
combined statistical and micromechanical analyses. Acta Mater 96:333–343.
https://doi.org/10.1016/j.actamat.2015.06.029

Simkin BA, Ng BC, Crimp MA, Bieler TR (2007) Crack opening due to deforma-
tion twin shear at grain boundaries in near-gamma TiAl. Intermetallics 15:55–60.
https://doi.org/10.1016/j.intermet.2006.03.005

Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a
handbook. MIT press, Cambridge, MA

Stanford N, Barnett MR (2008) Fine grained AZ31 produced by conventional thermo-mechanical
processing. J Alloys Compd 466:182–188. https://doi.org/10.1016/j.jallcom.2007.11.082

Thorvaldsen A (1993) Grain-growth as a stochastic process. Acta Metall Mater 41:1347–1357.
https://doi.org/10.1016/0956-7151(93)90244-M

Tome C, Canova GR, Kocks UF, Christodoulou N, Jonas JJ (1984) The relation between
macroscopic and microscopic strain-hardening in Fcc polycrystals. Acta Metall Mater 32:1637–
1653. https://doi.org/10.1016/0001-6160(84)90222-0

Tome C, Lebensohn R, Kocks U (1991) A model for texture development dominated by
deformation twinning – application to zirconium alloys. Acta Metall Mater 39:2667–2680.
https://doi.org/10.1016/0956-7151(91)90083-D

Tsai MS, Chang CP (2013) Grain size effect on deformation twinning in Mg-Al-Zn alloy. Mater
Sci Technol-Lond 29:759–763. https://doi.org/10.1179/1743284713y.0000000237

Wang J, Beyerlein IJ, Tome CN (2010a) An atomic and probabilistic perspective on twin nucleation
in Mg. Scr Mater 63:741–746. https://doi.org/10.1016/j.scriptamat.2010.01.047

Wang L, Yang Y, Eisenlohr P, Bieler TR, Crimp MA, Mason DE (2010b) Twin nucleation by slip
transfer across grain boundaries in commercial purity titanium. Metall Mater Trans A 41a:421–
430. https://doi.org/10.1007/s11661-009-0097-6

Wang J, Beyerlein IJ, Hirth JP, Tome CN (2011) Twinning dislocations on {(1)over-bar011}
and {(1)over-bar013} planes in hexagonal close-packed crystals. Acta Mater 59:3990–4001.
https://doi.org/10.1016/j.actamat.2011.03.024

Wang J, Beyerlein IJ, Hirth JP (2012) Nucleation of elementary {(1)over-bar 0 1 1} and {(1)over-
bar 0 1 3} twinning dislocations at a twin boundary in hexagonal close-packed crystals. Model
Simul Mater Sci 20:024001. https://doi.org/10.1088/0965-0393/20/2/024001

Wang H, Wu PD, Wang J, Tome CN (2013a) A crystal plasticity model for hexagonal close
packed (HCP) crystals including twinning and de-twinning mechanisms. Int J Plast 49:36–52.
https://doi.org/10.1016/j.ijplas.2013.02.016

Wang J, Yadav SK, Hirth JP, Tome CN, Beyerlein IJ (2013b) Pure-shuffle nucleation
of deformation twins in hexagonal-close-packed metals. Mater Res Lett 1:126–132.
https://doi.org/10.1080/21663831.2013.792019

Wang LY, Barabash R, Bieler T, Liu WJ, Eisenlohr P (2013c) Study of twinning in
alpha-Ti by EBSD and Laue microdiffraction. Metall Mater Trans A 44a:3664–3674.
https://doi.org/10.1007/s11661-013-1714-y

Wang J, Beyerlein IJ, Tome CN (2014) Reactions of lattice dislocations with grain boundaries in
Mg: implications on the micro scale from atomic-scale calculations. Int J Plast 56:156–172.
https://doi.org/10.1016/j.ijplas.2013.11.009

Wongwiwat K, Murr LE (1978) Effect of shock pressure, pulse duration, and grain-
size on shock-deformation twinning in molybdenum. Mater Sci Eng 35:273–285.
https://doi.org/10.1016/0025-5416(78)90129-5

Wronski M, Arul Kumar M, Capolungo L, Madec R, Wierzbanowski K, Tome CN (2018)
Deformation behavior of CP-titanium: experiment and crystal plasticity modeling. Mater Sci
Eng A-Struct 724:289–297

Wu W, Chuang CP, Qiao DX, Ren Y, An K (2016) Investigation of deformation twinning
under complex stress states in a rolled magnesium alloy. J Alloys Compd 683:619–633.
https://doi.org/10.1016/j.jallcom.2016.05.144

https://doi.org/10.1016/j.actamat.2015.06.029
https://doi.org/10.1016/j.intermet.2006.03.005
https://doi.org/10.1016/j.jallcom.2007.11.082
https://doi.org/10.1016/0956-7151(93)90244-M
https://doi.org/10.1016/0001-6160(84)90222-0
https://doi.org/10.1016/0956-7151(91)90083-D
https://doi.org/10.1179/1743284713y.0000000237
https://doi.org/10.1016/j.scriptamat.2010.01.047
https://doi.org/10.1007/s11661-009-0097-6
https://doi.org/10.1016/j.actamat.2011.03.024
https://doi.org/10.1088/0965-0393/20/2/024001
https://doi.org/10.1016/j.ijplas.2013.02.016
https://doi.org/10.1080/21663831.2013.792019
https://doi.org/10.1007/s11661-013-1714-y
https://doi.org/10.1016/j.ijplas.2013.11.009
https://doi.org/10.1016/0025-5416(78)90129-5
https://doi.org/10.1016/j.jallcom.2016.05.144


The Stochastic Nature of Deformation Twinning: Application to HCP Materials 39

Yang F, Yin SM, Li SX, Zhang ZF (2008) Crack initiation mechanism of extruded AZ31
magnesium alloy in the very high cycle fatigue regime. Mater Sci Eng A-Struct 491:131–136.
https://doi.org/10.1016/j.msea.2008.02.003

Yin SM, Yang F, Yang XM, Wu SD, Li SX, Li GY (2008) The role of twinning-detwinning on
fatigue fracture morphology of Mg-3%Al-1%Zn alloy. Mater Sci Eng A-Struct 494:397–400.
https://doi.org/10.1016/j.msea.2008.04.056

Yoo MH (1981) Slip, twinning, and fracture in hexagonal close-packed metals. Metall Trans A
12:409–418. https://doi.org/10.1007/Bf02648537

Yoo MH, Lee JK (1991) Deformation twinning in Hcp metals and alloys. Philos Mag A 63:987–
1000. https://doi.org/10.1080/01418619108213931

Zecevic M, Knezevic M (2017) Modeling of sheet metal forming based on implicit embedding of
the elasto-plastic self-consistent formulation in shell elements: application to cup drawing of
AA6022-T4. Jom-Us 69:922–929. https://doi.org/10.1007/s11837-017-2255-4

Zhao Z, Kuchnicki S, Radovitzky R, Cultino A (2007) Influence of in-grain mesh resolution on
the prediction of deformation textures in fcc polycrystals by crystal plasticity FEM. Acta Mater
55:2361–2373. https://doi.org/10.1016/j.actamat.2006.11.035

Zheng SJ, Beyerlein IJ, Wang J, Carpenter JS, Han WZ, Mara NA (2012) Deformation twinning
mechanisms from bimetal interfaces as revealed by in situ straining in the TEM. Acta Mater
60:5858–5866. https://doi.org/10.1016/j.actamat.2012.07.027

https://doi.org/10.1016/j.msea.2008.02.003
https://doi.org/10.1016/j.msea.2008.04.056
https://doi.org/10.1007/Bf02648537
https://doi.org/10.1080/01418619108213931
https://doi.org/10.1007/s11837-017-2255-4
https://doi.org/10.1016/j.actamat.2006.11.035
https://doi.org/10.1016/j.actamat.2012.07.027

	The Stochastic Nature of Deformation Twinning: Application to HCP Materials
	Contents
	1 Introduction
	2 Twinning as a Stochastic – Sequential Process
	2.1 Dynamic Processes of Twinning
	2.2 Statistical Features of Deformation Twins
	2.3 Statistical Analysis of Crystallographic Orientation Effects
	2.4 Statistical Analysis of Grain Size Effects

	3 Computational Modeling Methods
	3.1 Challenges in Modeling the Stochastic Twinning Process
	3.2 Some Important Components for Models of Polycrystalline Materials That Deform by Slip and Twinning
	3.3 Two Categories of Computational Methods for Modeling Twins in Polycrystals
	3.4 Homogenized VPSC Model Framework
	3.5 Twinning in SC Approach: CG Model
	3.6 Full-Field CPFFT Model Framework
	3.7 Twinning Model in CPFFT Framework

	4 Stochastic Twin Nucleation Model
	4.1 Probability Model for Critical Stresses for Twin Formation
	4.2 Statistical Representations of Grain Structures
	4.3 Spatially Resolved Stress States in Deforming 3D Polycrystals
	4.4 Incorporation of Statistical Stress and Strength Distributions in Homogenization Models

	5 Stochastic Twin Growth Model
	5.1 Local Twin Boundary Stresses to Expand Twin
	5.2 Grain Neighborhood Effects on Stresses to Expand the Twin
	5.3 Incorporation of Neighborhood Effects in Homogenization Models

	6 Conclusions and Outlook
	References




