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edge length of unit cell 
base vector of parent crystal 
reciprocal base vector 

NOTATION 

{Ill} planes of Thompson tetrahedron 
coordinate system defined by base vectors 8i 

coefficient in expression for the elastic energy of a plate 
vertices of Thompson tetrahedron 
base vector of twin crystal 
reciprocal base vector 
base vector of twin crystal with orientation relation I 
Burgers vector of twinning dislocation 
Burgers vector of dislocation in parent crystal 
Burgers vector of dislocation in twin crystal 
coordinate system defined by base vectors bi 
edge length of unit cell in tetragonal or hexagonal crystals 
components of lattice vector joining adjacent K1 planes 
elastic stiffness constants 
concentration of solute 
correspondence matrix (parent to twin) 
inverse correspondence matrix (twin to parent) 
components of C 
interplanar spacing of lattice planes parallel to K1 

spacing of rational facets resolved normal to irrational interface 
mean grain diameter 
unit vector parallel to 'lz 
free energy of homogeneously formed twin embryo 
critical free energy of twin embryo 
metric tensor 
ijth component of G [ = 8; · 8j] 

reciprocal metric tensor 
height of step in K1 interface 
indices of plane h in twin (reciprocal lattice) coordinates 
unit matrix 
cell factors 
primitive reciprocal lattice vector normal to K1 

solid-liquid distribution coefficient 
invariant plane of twinning shear (twinning or composition plane) 
undistorted (but rotated) plane (conjugate twinning plane) 
unit vector parallel to "' 
ith contravariant component of I in co-ordinate system A 
rotation matrix relating co-ordinate axes 
ijth component of L 
integer used to characterize shuffling in Bevis-Crocker theory 
unit normal to K 1 

ith covariant component of m in co-ordinate system A 
covariant components m; of m represented as a row matrix 
number of twinning dislocations in wall 
unit normal to K2 

number of twinning dislocations in pile-up 
positive integer ~ q 
plane of shear 
number of K1 planes intersected by w 
number of K2 planes intersected by k 
positive integer ~ q 
core radius of dislocation 
long semi-axis of oblate spheroidal twin 
radius of dislocation loop 
magnitude of shear 
simple shear tensor (or its matrix representation) 
matrix representation of S in co-ordinate system A 
ijth component of S 
ijth component of S in co-ordinate system A 
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a non-lattice repeat vector 
lattice vector of a parent crystal or column matrix representation of the vector 
ith contravarient component of u 
column matrix representation of u in co-ordinate system A 
ith contravariant component of u in co-ordinate system A 
components of v in twin-based co-ordinate system 
volume of twin embryo 
lattice vector of a twin crystal or column matrix representation of the vector 
ith contravarient component of v 
column matrix representation of v in co-ordinate system B 
ith contravariant component of v in co-ordinate system B 
primitive lattice vector parallel to 112 

correspondence matrix with integral components [ =mC] 
energy needed to form loop of twinning dislocation 
critical energy to nucleate twinning dislocation 
contravariant components of a vector in an orthonormal basis 
short semi-axis of oblate spheroidal twin 
critical semi-thickness of homogeneously nucleated twin 
matrix used in Bevis--Crocker theory 
vector defining a twin site 
contravarient component of z in twin co-ordinate system B 
face centres of Thompson tetrahedron 
axial ratio of tetragonal or hexagonal structures 
Kronecker delta ( = I when i = j, = 0 when i # j) 
shuffle vectors 
direction of shear 
conjugate shear direction 
shear modulus 
Poisson's ratio 
surface free energy of K1 interface 
surface free energy of step interface 
stacking fault energy 
yield or flow stress 
friction stress 
reciprocal density of coincident lattice sites 
resolved shear stress on K1 in "' direction 

Notes: Bold face type is used for vectors (lower case) and second rank tensors (upper case), and 
for their matrix representations in particular co-ordinate systems. Column matrices of contravari
ant components always represent vectors whilst row matrices of covariant components represent 
plane normals and are distinguished by the notation m' for the transpose of a matrix m. The 
transpose and inverse of S are written S' and s-•. respectively, and the Einstein summation 
convention is used. Further details may be found in Refs 23 and 20. When the usual convention 
for all equivalent sets of planes or directions is used to specify a crystallographic relation, the indices 
enclosed by { } and ( ) are always those of a particular variant so that permitted permutations 
of these indices will always give another self-consistent variant. The slightly unusual crystallo
graphic notation (uvw] used for tetragonal crystals is merely a reminder that to obtain equivalent 
vectors, u and v, but not w, may be permuted. 

1. INTRODUCTION 

3 

The theory of deformation twinning merits attention both because of its intrinsic import
ance as a mode of plastic deformation in many crystalline solids and because of its close 
relationship to the theory of martensitic transformation. With the exception of one useful 
but necessarily very condensed Encyclopaedia article,('> there has been no attempt to sur
vey the whole of this rapidly developing field since 1973 when Mahajan and Williams(2> 
published a comprehensive review. Important earlier surveys include those of (R.W.) 
Cahn,(3.4> Hall,(5> Klassen-Neklyudova(6> and Partridge.(7) Deformation twins have long been 
identified in b.c.c., h.c.p. and lower symmetry metals and alloys,O-?l and are now found 
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to be formed in many f.c.c. metals and alloys,<8- 111 in ordered alloys<121 and other intermetallic 
compounds,<13> in elemental semiconductors<141 and compounds,051 in other non-metallic 
compounds such as calcite and sodium nitrate,<161 and even in complex minerals< 171 and 
crystalline polymers.<18l 

At temperatures below those at which individual atoms are mobile, slip and twinning are 
the major deformation modes which enable a solid to change shape under the action 
of an applied stress. Experiments with single crystals have shown that some structures 
(e.g. f.c.c. metals) do not normally twin until appreciable plastic deformation by slip has 
been recorded, whilst in others (e.g. b.c.c. metals), twins often form in the elastic region 
of the stress vs strain curve before macroscopic yielding. Delayed twinning usually has a 
rather small effect on the actual stress vs strain curve, whereas immediate twinning is often 
characterized by very rapid formation of twinned regions, giving large load drops. Twinning 
of this latter type is also very sensitive to temperature of deformation and to strain rate, the 
relative contribution of twinning to the overall strain increases as the temperature is lowered 
or the strain rate increased. Very high strain rates, e.g. in shock-loaded or explosively 
deformed materials, often lead to twinning, and under such conditions, twins have been 
observed even in f.c.c. aluminium-magnesium alloys011 which, according to conventional 
theory, should not twin because the stacking fault energy of aluminium is too high. 
Deformation by slip alone is frequently observed, but many investigators believe that 
twinning is always accompanied (or preceded) by some microslip, even though this slip may 
be difficult to detect. 

Twinning is especially important in crystals of lower symmetry where the five 
independent slip systems required to satisfy the criterion for a general deformation 
may not be available. In this case, Taylor's "minimum total shear" hypothesis for 
specifying the active slip systems has to be expressed in terms of contributions to the 
overall deformation from both slip and twinning, <191 and is correspondingly more 
complex. 

The classical definition of twinning<2-6·20l requires that the twin and parent (or matrix) 
lattices are related either by a reflection in some plane or by a rotation of 180° about some 
axis. In crystals of high symmetry, these orientations are frequently equivalent. Twin 
structures may form during nucleation and growth processes such as crystal growth from 
the vapour or liquid phases, phase transformation or recrystallization of the solid. In 
such cases, quite large and relatively perfect twins (i.e. containing only expected imperfec
tions such as a reasonably low density of dislocation lines) may be produced. Another 
type of twinning ("transformation twinning") is found in the product structures of many 
martensitic transformations. Transformation twinning produces highly organized struc
tures in which, as predicted by the crystallographic theories of martensite,<20l alternate 
twin lamellae of fixed thickness ratios form regular arrays. In many martensites, the 
twin boundaries in such an array are highly glissile, and their displacement under stress 
can be viewed as a highly ordered type of plastic (or in some cases pseudo-elastic) 
deformation.<20•211 In contrast, ordinary deformation twins usually form as individual thin 
plates embedded in the matrix or in contact with the free surface or a grain bound
ary. Deformation twins in the cubic metals, for which the twinning shear is large, are 
often very thin and this makes it difficult to ascertain the degree of perfection of the 
twin lattice. 

Deformation twins form, in principle at least, by a homogeneous simple shear of the 
parent lattice, and this implies highly co-ordinated individual atom displacements, in 
contrast to the apparently chaotic processes of generation and growth of slip bands 
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during glide deformation. However, some recent theories of twinning require the twin to 
thicken by the random agglomeration of three- or four-layer twin faults which have been 
independently nucleated. These theories imply that deformation twins have imperfect 
structures containing many stacking faults. Most of the dislocations needed for slip are 
believed to be generated internally by double cross-slip or Frank-Read sources, and rather 
similar dislocation-type theories may be developed to describe deformation twinning in 
high symmetry structures when the shear takes place on a rational plane in a rational 
direction. However, it is more difficult to develop dislocation mechanisms for type I or 
type II deformation twinning when only the plane or the direction respectively is 
rational. 

The present article is concerned only with deformation twinning and, to a lesser extent, 
with the related phenomenon of transformation twinning. The first part of the article 
describes in some detail the evolution of the formal crystallographic theory of deformation 
twinning, and its use to predict the observed twinning modes of many structures. The second 
part of the review is concerned with more physical aspects of deformation twinning such as 
mechanisms for the nucleation and growth of twins, experimental and theoretical investi
gations of twinning in real materials (especially the common metallic structures), and the 
effects of twinning on mechanical properties. A bridge between the crystallographic and 
physical theories is provided by studies of the atomic structure of twin interfaces, including 
computer simulations and high resolution electron microscopy, and of twinning dislocations 
and other defects. 

The following topics are considered in some detail: 

(1) the crystallographic theory of twinning and the choice of twinning mode, 
(2) the twin interface and twinning dislocations, 
(3) models for the nucleation and growth of twins, especially in b.c.c., f.c.c. and h.c.p. 

structures, 
(4) the influence of material variables on twinning, and 
(5) the accommodation of deformation twins and their role in crack nucleation. 

2. CRYSTALLOGRAPHIC THEORY OF TWINNING 

2.1. Twinning Modes and Twinning Shears 

The central problem of the crystallographic theory is to understand the factors which 
influence the choice of twinning mode, and ultimately to predict which twinning mode or 
modes will operate in a given crystal structure. This problem is addressed here mainly 
for structures in which all atoms are equivalent, i.e. for ideally pure elements 
and ideally disordered solid solutions. (J.W.) Cahn<22> has emphasized that real materials 
are always impure, i.e. are always solid solutions with some short range order, so that 
"true" deformation twinning is impossible because the parent and sheared-parent structures 
will have different short-range order and hence different energies. This approach leads to the 
conclusion that all deformation twinning should strictly be regarded as a special type of 
stress-induced martensitic transformation, but whilst the reservation should be noted, 
experimental results indicate that in practice it is often unimportant, and most materials twin 
in the manner expected for ideal disorder. 

In dealing with superlattice structures and intermetallic compounds, it is necessary to make 
the opposite assumption of perfect long-range order. An overview of the crystallography of 
the twinning modes expected in superlattice structures based on disordered f.c.c. and b.c.c. 
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solutions has recently been published,<I2> so that only a brief discussion is included in the 
present review. 

In the classical theory of deformation twinning, the original (parent) lattice is re-orien
tated by atom displacements which are equivalent to a simple shear of the lattice points, 
or of some integral fraction of these points. The invariant plane of this shear is called KI 
and the shear direction 'II; the second undistorted (or conjugate) plane is K2 , the plane 
containing 'II and the normals to KI and K2 is the plane of shear, here denoted by P, 
and the intersection of K2 and P is the conjugate shear direction '12 . The Bilby and 
Crocker sign convention (see Fig. 1) will be used for all specific modes of the form 
(hkl)[uvw] and also for general indices {hkl}(uvw), where the indices always specify a 
particular variant. A particular twinning mode of the structure is defined when KI and '12 

(or, equivalently, K2 and 'II) are fixed, but it is usual to specify all the crystallographic 
elements together with the scalar magnitude s of the shear. For a shear on the positive 
side of KI, the sign convention requires the angle between 'II and '12 to be obtuse in the 
parent crystal, the angles between 'II and the positive normal to K2 and between '12 and 
the positive normal to KI to be acute, and the positive directions of 'II, '12 and the posi
tive normal to P to form a right-handed set. The conjugate or reciprocal mode then has 
the same P and s but KI and K2 , and 'II and '12 are interchanged. Twins are usually 
classified as type I (KI and '12 represent a rational plane and a rational direction of the 
parent lattice), type II (K2 and 'II are rational) or compound (all four crystallographic 
elements are rational). In elementary treatments, this classification is based on the 
assumption that in order to reproduce the same lattice in a new orientation, some unit 
cell of the parent structure must be sheared into an equivalent unit cell of the twin. Such 
a unit cell may be defined by three non-coplanar vectors in KI and K2 , and the orien
tation of the new twin lattice relative to the original lattice is a reflection in KI for a 
type I twin and as a rotation of 180° about 'II for a type II twin. However, the 
important feature of twinning as a mode of deformation is the shape change resulting 
from the simple shear, so that a twin might be regarded as any reorientated region pro
duced by a simple shear of the parent lattice. This more general definition, proposed by 
Bilby and Crocker,<23l leads to the prediction of additional possible modes, in which 
either three or four of the twinning elements may be irrational, and to non-classical 
orientation relations between twin and parent. 

A homogeneous simple shear may be represented by the affine deformation 

v=Su 

Fig. I. The four twinning elements. The twinning and the conjugate (or reciprocal) twinning planes 
are K1 and K2 and the twinning and conjugate (or reciprocal) twinning directions are 11 1 and 112 , 

respectively. The directions q1 and q2 and the normals to K1 and K2 are all contained in the plane of 
shear P. 

(I) 
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where u and v are corresonding lattice vectors of the parent and twin, and S is a second rank 
tensor. If the vectors u and v are written as column matrices Au= [Au;], Av = [Av;] of their 
components in some co-ordinate system A, eq. (1) becomes a matrix equation in which 
AS= (ASJ) is a 3 x 3 matrix representation of the shear. Using the Einstein summation 
convention, this equation may be written in the alternative form 

(2) 

S has a particularly simple representation in an orthonormal co-ordinate system defined by 
the unit vector parallel to '11 and the unit normals to the K 1 plane and the plane of shear; 
in this system all diagonal elements of As are unity and the only other non-zero element is 
AS~= s. In a general co-ordinate system, 

(3) 

where ~ J is the Kronecker delta, A[; are the contravariant (real space) components of 
a unit vector I parallel to '11 and Am; are the covariant (reciprocal space) components 
of the unit normal to the K 1 plane. Then if u is a lattice vector of the parent, its 
components will all be integers if the base vectors a1 of A define a primitive cell, and 
will be multiples of ! for a centred cell, whilst those of v will, in general, be irrational. 
However, since the vector v is a lattice vector of the twin lattice, it must have rational 
(integral or half-integral) components in a new basis B which is defined by the base 
vectors b; of the twin lattice and is related to A by some rotation or reflection (improper 
rotation) L. This gives 

(4) 

where C is called the correspondence matrix. Note that the condition that the parent and twin 
have the same specific volume ensures that S, L and C are all unimodular, i.e. have 
determinants of ± 1. The recent Bevis-Crocker approach to the theory of twinning makes 
extensive use of the properties of C. In tensor notation, eq. (4) becomes 

(5) 

For lattices or centrosymmetric structures, the two orientation relations mentioned 
above are the only distinct possibilities in the classical theory and twins of types I and II 
are often described simply as "reflection" (in K1) and "rotation" (about '11) twins respect
ively. Many metals form compound twins with only one orientation relationship, but this 
requires that the plane of shear P be a mirror plane. When this condition is not met, even 
compound twins have two possible orientation relations which have been called type I, 
compound and type II, compound twins respectively.<24> When the type I and type II 
orientations of a compound mode are equivalent, it may be described as having a "combined" 
orientation. 02> 

When the structure does not have a centre of symmetry, there are two possible sets of 
atomic positions for each spatial orientation of the unit cell, leading to the four orientation 
relations of the classical theory of twinning (see below). In addition, the Bilby-Crocker theory 
allows other (non-classical) orientations as theoretical possibilities. A further complication 
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has become evident recently from work on the atomistic structure of twin interfaces. In some 
cases, the lattice sites of parent and twin may be related not by a simple shear but by a 
combination of a simple shear and a relative translation of the two lattices through a vector 
t which is not a repeat vector of either lattice. The pseudo symmetry elements of the combined 
parent and twin crystal are modified or destroyed at an atomic level by such a translation, <2>-27> 

although this would not be evident in many measurements (e.g. selected area diffraction) 
which are independent of t. 

In twinning, as in slip, some structures have a unique mode whilst others exhibit several 
modes which are not crystallographically equivalent. An operative slip mode is usually, but 
by no means invariably, characterized by the closest packed plane and direction of the 
structure; the operative twinning modes are similarly selected by a combination of easy atomic 
"shuffling" and minimum magnitude of the associated shear. 

2.2. Early Attempts to Predict Twinning Modes 

The simple crystallography of compound twins in structures of high symmetry led to a 
method of deducing the twinning elements by choosing a plane of mirror symmetry normal 
to K1 as the plane of shear, thus defining q1 • A procedure of this kind has no obvious 
physical significance and also has the disadvantage of requiring an experimental determi
nation of K1, whereas the aim of a theory should be to predict all of the twinning elements. 
The method does give the correct twinning elements for many of the twins observed in 
metals<5> but examples are known for which the basic assumption is incorrect, and the 
method becomes unwieldy or incorrect in cases where some of the elements are irrational. 
A more systematic theory was developed by Kiho<28•29l and by Jaswon and Dove<3()-32> who 
assumed that the twinning elements may be selected by minimizing the magnitude of the 
shear. Since these theories have been reviewed previously,<20> only an outline description is 
given here. 

For single lattice structures with only one atom in the primitive unit cell, Jaswon and 
Dove showed how to calculate the minimum twinning shear consistent with the con
dition that S carries all atoms into their correct final positions. Although this assumption 
may be incorrect because of an additional lattice translation t, the crystallographic 
elements of a mode are independent of t, so that only the shear components of the 
total relative displacements will affect the calculation of the mode of minimum shear. 
Of course, it is quite possible that the operative mode is determined by the energy, 
and hence by the atomic structure, of the interface, rather than simply by the value of 
s, but the assumption of minimum shear with no shuffles leads, in fact, to the correct 
prediction of the actual twinning modes of almost all the metallic single lattice 
structures. 

When there are two atoms in the primitive unit cell (double lattice structures) some 
shuffling is unavoidable except in certain special modes. Jaswon and Dove analysed the 
possible shuffles by associating a "motif unit" of two atoms with each lattice point; during 
the shear, the motif unit is considered as rigid and each atom is thus given the same 
displacement as its lattice point, which is conveniently regarded as situated at the centre 
of symmetry, i.e. the mid-point of the atom pair. The simplest modes then arise from 
the condition that, apart again from a possible relative translation t, either all or one
half of the lattice points are correctly carried into twin positions by the shear. For type I 
twins, this leads to two basic "double lattice" ("structure") shuffles, the X' and Y 
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mechanisms, and one suggested "double lattice" (combined "lattice" and "structure") shuffle, 
the X mechanism (see Ref. 20 for details). Essentially similar procedures may be used for type 
II twins in single and double lattice structures.(32l 

The Jaswon and Dove division of the net atomic displacements into shear plus shuffles was 
also followed by Bilby and Crocker(23J in their later, more comprehensive treatment, but this 
division can, with equal validity, be made in other ways. In particular, if the atoms are 
regarded as embedded in a continuum which is sheared homogeneously to give the twin, the 
two atoms of a motif pair will undergo different shear displacements, and the shuffles 
to complete the structural change will correspondingly be different from those in the 
Jaswon-Dove treatment. The conditions under which there are no required shuffles are also 
slightly different for these two treatments (see below). 

The suggestion that the magnitude of the twinning shear is an important factor in 
determining the operative twinning mode or modes was also made by Kiho(28•29J whose first 
paper predated that of Jaswon and Dove. He considered specifically the atom movements at 
an idealized parent-twin interface, and assumed that each atom moves to the nearest avail
able twin site, and that the vector sum of the shuffles is zero. The shuffle mechanisms which 
he described included the X and Y mechanisms, together with another mechanism to explain 
the anomalous twins in titanium. Kiho also suggested that in choosing between a twin
ning mode and its conjugate, the mode for which the Burgers vector of a twinning disloca
tion in the interface is least should be preferred. This is equivalent to a statement that the 
preferred mode of a conjugate pair should be that for which the spacing of the lattice K1 

planes is least. 

2.3. Analysis of Shears and Shu.ffles: The Bilby-Crocker Theory 

The available experimental results undoubtedly show for structures with a basis that 
shuffles may be as important as the magnitude of the shear in controlling the operative 
twinning modes. The theory of Bilby and Crocker(23J included a more rigorous treatment of 
the orientation relations and of the division of the atomic displacements into shear and 
shuffles. In particular, the analysis of the shuffles is the most complete currently available, 
so that although this theory has also been extensively reviewed,(20J it is useful to re-consider 
some of its salient features. 

Since a parent crystal and its twin remain in contact at the mterface plane during the 
formation of the twin, the relation between the structures must be such that this plane is 
invariant in any deformation carrying one lattice into the other. This is automatically 
accomplished in the shear description, but the orientation relations between the two lattices 
are not specified in terms of a shear but as proper or improper rotations. Consideration of 
the operations of this type which will leave the K1 plane unaltered leads at once to the four 
orientation relations of the classical theory, namely: 

(I) reflection in K1, 

(II) rotation of 180° about 'I 1 , 

(III) reflection in the plane normal to q1 , and 
(IV) rotation of 180° about the direction normal to K1 • (6) 

As already mentioned, it is also possible to have orientations which do not correspond to 
any of the relations I-IV, but in which the lattices (or suitable superlattices) are nevertheless 
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connected by a simple shear. Non-classical twins may possibly form as a result of "double 
twinning", <33> but a more systematic general theory developed by Bevis and Crocker<34•35> is 
outlined in Section 2.4. However, there is currently no very convincing experimental evidence 
for the occurrence of non-classical twinning modes, so that in this section the classical 
orientation relations are assumed to be valid. The orientation relations I-IV, and the 
associated division into type I and type II twins, follow necessarily from the more general 
shear definition if the assumption is made that there exists a cell of the parent which is sheared 
into an equivalent cell of the twin. 

The orientation relations of eq. (6) may be written as relations between the base vectors 
a1 and b1: 

b\1> = a.- 2(a. · m)m 
r r r ' 

b\ll> = 2(a. · 1)1- a. 
r r '' 

b\111> =a.- 2(a. ·1)1 and 
I I I ' 

bl1v> = 2(a1 • m)m- a1• (7) 

Since bl1> = - bl1v> and bill> = - bl111>, the lattices given by orientations I and IV are identical, 
as are those given by II and III. When the atomic positions are considered, however, the two 
orientations in each pair are seen to be equivalent only for structures which have a centre 
of symmetry. It is thus sufficient to consider only bll) and bill> when there are no more than 
two (identical) atoms per primitive unit cell (single or double lattice structures), but the other 
two relations may be needed for more complex structures. 

It may readily be shown that twin orientations I and II (and III and IV) are related by 
a reflection in the plane of shear, P. Let any parent vector have components x 1 in an 
orthonormal basis defined by I, m and the unit normal to the plane of shear, lAm. Then 
for orientation I, the twin vector has components [xi, -x2, x 3 ] and for orientation II, 
it has components [xi, -x2, -x3 ]. There is no distinction between orientations I and II if 
the two twin vectors are crystallographically equivalent, i.e. if the plane of shear is a 
mirror plane. Clearly, since orientations IV and II have position vectors which are the 
negatives of I and II, respectively, these two orientations are also equivalent when P is a 
mirror plane. 

In their development, Bilby and Crocker prove that if u is a lattice vector of the parent 
structure, then for orientations I and II, the rational lattice vector (Au1 + 8v1)a1 must lie in 
the plane Kt. * For orientation I, this represents any vector in Kt whereas for orientation II 
it must be parallel to 'It· Similarly for orientations II and IV, the rational vector (Au 1- V)a1 
lies in the interface and is parallel to 'II for orientation III. Moreover, the rational vector 
( Au1- 8v1)a1 is parallel to '12 for orientation I and represents any vector in K2 for orientation 
II, and the same results hold for ( Au1 + 8v1)a1 with orientations IV and III, respectively. These 
results thus prove that if the classical orientation relations are valid, Kt and 112 must be rational 
for orientations I and IV (type I twinning) and 'It and K2 must be rational for orientations 
II and III (type II twinning). It follows that the usual assumption that a unit cell of the parent 

*In Bilby and Crocker's equations, (x1- yi) is equivalent to (Au'+ 8v1) and (x1 + y1) is equivalent to (Au1- 8v1); 
the apparent change of sign arises because of the effective definition y = -Sx instead of v = Su. More details of 
the Bilby--Crocker theory are given in a previous description<20' which uses the sign convention of the present 
review. 
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is sheared into an equivalent cell of the twin is valid if the twin has a classical orientation 
relation with its parent. 

In eqs (2), (3) and (5), an upper prefix identifying the coordinate system in which the 
components of a vector or tensor are defined has been used but in order to simplify the 
equations in the remainder of this review, this prefix will now be omitted unless it is required 
to avoid ambiguity. Thus a unit vector in the '12 direction may be written simply as g = g;a;. 
From eq. (3), it is apparent that a twinning mode is fully specified by s, I and m, but as noted 
in the introduction, it is also fully determined by K1 and '12 (or by K2 and"'). Thus if K1 and 
'12 are known, the shear direction "' is given by 

sl = 2[m- (g · m)-'g] (8) 

and the magnitude of the twinning shear is given by: 

(9) 

Consider next whether or not all the parent lattice points are carried to twin lattice sites 
by the shear. Let w = w;a; be a primitive lattice vector in the '12 direction, and let its projection 
along the normal to the K1 plane have magnitude 

(10) 

where q is a positive integer giving the number of lattice K1 planes of spacing d traversed by 
this vector. Whatever the structure of the interface, it reaches an equivalent position after 
moving forward a distance qd, so that the atom displacements are repeated in each successive 
group of q planes, and only one such group need be considered. 

Let any lattice point in the nearest K, plane to that through the origin be cia; (i.e. c;m; =d). 
Then all the parent sites within the q planes of interest are represented by pc;a;, where p is 
a positive integer such that p :( q. After the homogeneous shear, the positions of these sites 
will become pc;a; + spdl, and this may be written: 

( 11) 

Now consider the positions of the twin lattice sites. The parent site defined by w becomes 
a twin site at z = z;b; relative to the same origin, where 

(12) 

Since the bases A and B define similar unit cells, all other twin sites relative to this site are 
given by rc;b;, where r :( q if we confine our attention to the sites in the q planes of interest. 
Note that the twin site defined by a particular value of r lies in the same K1 plane as the parent 
site defined by a value of p provided p + r = q. Thus all the twin lattice sites in these q planes 
are specified by the vectors 

(13) 

The lattice shuffles must relate the twin lattice sites to the parent lattice sites. Assume, as 
seems reasonable for type I twinning, that all sites in a given K1 plane (i.e. having a fixed value 
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of p) shuffle in the same way, and describe these shuffles by the vectors A1, obtained by 
subtracting (11) from (13). However, for orientation I 

and 

so that after subtracting, 

(14) 

For a given parent site, the parameters z; and r representing the twin site may be regarded 
as disposable; that is, any pair of parent and twin sites may be related by the vector A1• In 
general, the shuffles will probably be chosen so that WI is as small as possible. If q = I or 
2, it is always possible to choose the parameters so that A1 = 0 for all sites. For q = I, p = I 
and r = 0, z; = -w; = -c;. For any value of q, the same choice of rand z; will ensure that 
the sites on the plane p = q do not have to shuffle, as is physically obvious. Now consider 
q = 2 and the sites on the plane defined by p = I. The shuffle vectors for this plane are now 
all zero if r =I and W;= -z;. More generally, if q is even, the lattice points in the plane 
p = q /2, as well as those in the plane p = q, are sheared directly to their twin positions, as 
may be seen by choosing r = p and z; = - w;. 

A similar, slightly more complex treatment can be given for the lattice shuffle vectors A11 

of a type II mode.<20> Lattice shuffling in type II twinning depends upon a parameter ij which 
is equal to the number of K2 lattice planes traversed by a primitive lattice vector in the "• 
direction. No shuffles are required for ij = I or 2, and equations similar to those given above 
for A1 may be developed for A11 on the assumption that all lattice sites in any K2 plane shuffle 
in the same way. 

Any structure with a basis of more than one atom per primitive unit cell must normally 
require relative translations of the atoms ("structure shuffles") during a twinning operation. 
In the case of relatively simple, centrosymmetric, double-lattice structures, such shuffles may 
readily be classified and combined where necessary with any lattice shuffles which may be 
required in a particular twinning mode. This description will not be repeated here since it has 
essentially not been developed further since the work of Kiho, Jaswon and Dove, and Bilby 
and Crocker, previously reviewed.<20> 

2.4. Classical and Non-Classical Twins: The Bevis-Crocker Theory 

The Bilby-Crocker theory applies to twins which satisfy the classical orientation relations; 
the more general definition was first addressed by Crocker<33> who considered the possibility 
of "double twinning" in which a combination of two simple shears plus a rigid body rotation 
acts simultaneously to produce an equivalent simple shear. The two component shears and 
the resultant deformation must all have a principal strain equal to zero, and this restricts the 
combinations to be considered to those in which the two twinning directions and the normals 
to the two K1 planes are all coplanar. The two planes of shear are thus coincident, and the 
problem is essentially two-dimensional. Consideration of the various possible combinations 
of type I and type II twins shows that the plane of shear must be rational, and furthermore 
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all eight twinning elements of the two component twinning modes must also be rational, so 
that only compound modes may be combined together in this way. 

The combined effect of the three component deformations is to produce an equivalent 
simple shear with the same rational plane of shear, so that this also represents a com
pound twinning mode if it satisfies one of the usual types of twin orientation relation. 
However, it is also possible for all four elements of the equivalent shear mode to be 
irrational, and this is thus an example of the more general type of twinning shear which is 
defined<23l as any simple shear which restores the lattice or a superlattice in a new orientation. 
The possible existence of "twins" with four irrational twinning elements is a remarkable result 
of the theory of double twinning. The assumptions of this theory nevertheless appear to be 
rather artificial and it seems preferable to generalize the classical theory of deformation 
twinning by beginning directly with the proposed general definition. The relevant theory for 
lattices (i.e. excluding detailed consideration of atomic shuffles) was first given by Bevis and 
Crocker. <34•35) 

The original tensor development is transferred here to matrix notation; it utilizes certain 
properties of the correspondence matrix C defined in eq. (4). An expression for the magni
tude of the shear which depends only on the correspondence matrix and the metric tensor 
G with components Gij =a;· a1 (G =I, where I is the unit matrix with components bij, in an 
orthonormal coordinate system) may be obtained<36l from the trace of the matrix product 
C' G C G- 1; this relation is 

(15) 

The theory is developed to show there is a restriction on the correspondence matrix 

(16) 

Once the correspondence is specified, it fixes not only the magnitude s but also the 
direction I of the shear and the normal m to the K1 plane, both defined here as unit vectors. 
For example, the equation 

(17) 

where 

Y=G-C'GC (18) 

is a quadratic in the ratio m2 /m 1 and there are two similar equations for the ratios m3 /m2 

and m1 /m3 ; if C is known, the three equations give two possible solutions for the 
components of m. The three components of I may be determined directly from m and s, 
or may be derived from three similar quadratic equations derived from the components 
of y-t. 

Bevis and Crocker show that if the twinning mode is of type I, the matrix C must be of 
the form 

C=LS= -1+2gm'/(m'g) (19) 



14 Progress in Materials Science 

and the correspondence matrix for type II twinning is similarly 

C = -I + 21 n' /(n'l) (20) 

The two correspondence matrices just derived are independent of the metric tensors G and 
G- 1 and so give rise to classical twins in all lattices; they have the property that C = c-• so 
that eq. (16) is automatically satisfied. They also have the property that tr C = -1 and this 
is a useful necessary, although not sufficient, condition for C to represent a deformation twin 
of classical type. 

2.5. Operative Twinning Modes in Single Lattice Structures 

The theory of the preceding section will now be applied to the prediction of the most 
likely twinning modes in particular structures, assuming these modes to be governed by 
the magnitude of the lattice shear and the complexity and magnitude of the shuffles. 
Equation (9) may be rewritten as 

(21) 

Now writing s ~ smax, where smax is any chosen maximum shear, and using eq. (10), gives 

(22) 

which is a condition on the interplanar spacing d of a set of possible K1 planes and the 
shortest lattice vector w between two such planes qd apart. The inequality (22) reduces to 
d 2 ~ lbl 2/(s~ •• + 4) for q = 2, and to d 2 ~ ibi2/4(s~ •• + 4) for q = 4, if lwl is replaced by lbl. 
This may sometimes be convenient, but the inequality then becomes a necessary condition 
only (i.e. it may not be a sufficient condition) for the minimum shear on the planes of spacing 
d to be less than smax. There is no need to investigate separately the conditions for type II 
twinning, since the possible type I modes with K1 rational will automatically give the type 
II modes with K2 rational. 

The inequality (22) is independent of any co-ordinate system, but in using it, care must be 
taken if a superlattice cell of higher symmetry is used instead of a primitive unit cell. Thus 
if the K1 planes are represented by the vector k = k;a; in a primitive reciprocal lattice basis 
with metric G- 1, the components k; are integers with no common factor (as also are w;). The 
condition (22) may thus be written 

(23) 

However, if a larger (centred) unit cell is used, and k; and w; are still given integral values, 
we have to introduce the cell factors<20> /, I' and the inequality becomes: 

(24) 

It is frequently more convenient to refer the twinning elements to a centred cell, and thus 
to use (24). For single lattice structures, the normally observed twinning mode has the lowest 
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shear consistent with the absence of shuffles. This applies in particular to the normal {112} 
<I TI) mode for b.c.c. twinning and to the {Ill} < 112) mode for f.c.c. twinning. In almost 
all single lattice structures, the operative mode and its conjugate are crystallographically 
equivalent, and the shear is very much smaller than that of any rival "no-shuffle" mode. This 
is not true for mercury which is considered separately below. 

In double lattice structures, more than one twinning mode may be active during 
deformation, but almost all of the many experimental observations of deformation twin
ning in cubic and tetragonal single lattice structures indicate that only the minimum shear 
modes are operative. However, there are isolated reports of additional twinning modes, 
for example in b.c.c. iron-beryllium alloys(37- 39l and in b.c.t. iron-nickel-{;arbon marten
sites. <24·38l Thus, it is appropriate to consider briefly the application of the Bevis and Crocker 
general theory to the prediction of other possible modes, including non-classical modes, in 
single lattice structures. 

Following the Jawson-Dove approach, eq. (15) may be rewritten as an inequality in order 
to list all correspondences for which the twinning shear is less than or equal to some chosen 
value smax. In particular, this gives for the cubic system 

tr(C' C) :( S~ax + 3. (25) 

The columns of C are the components of the vectors specifying the cell into which the 
reference cell defined by a; is deformed by S. The lattice is not reproduced if any of the 
components of C are irrational. When a; define a primitive unit cell, the point lattices of 
parent and twin are identical if the columns of C represent lattice vectors. However, if the 
base vectors define a base-centred cell, it is additionally necessary that the sum of the first 
two columns of C must be twice a lattice vector, for a body-centred cell the sum of all three 
columns of C must be twice a lattice vector, and for a face-centred cell the sum of any 
two columns must be twice a lattice vector. When the elements of C are rational but do 
not satisfy these conditions, the point lattice produced by S differs from the parent lattice 
but has a superlattice in common, so that a twin may be produced by combining the 
shear with a shuffling of some fraction of the lattice sites. If some elements of C are frac
tions, a matrix W = m C with only integral elements may be defined, and the inequality 
(25) becomes 

(26) 

Using a trial and error procedure, Bevis and Crocker list 10 correspondences for cubic 
systems in which m = 1, s~ax = 9, 19 correspondences for m = 2, s~ax = 3.5, and 31 corre
spondences for which m = 4, s~ax = 2.5. For primitive lattices, the fraction of the lattice 
points sheared direct to twin positions is 1/m, but it may be 2/m, 1/m or 1/2m for centred 
lattices. 

New unimodular matrices may be derived from any given C by interchanging rows or 
columns, or changing their signs. In the cubic system, these operations simply lead to 
equivalent variants of C, but in systems of lower symmetry, many non-equivalent variants 
may be derived from each cubic correspondence. However, some of these do not represent 
possible twins because the restriction of eq. (16) involves lattice parameters in non-cubic 
systems. Bevis and Crocker show that the possible correspondence matrices may be divided 
into seven different classes and there are various predicted relations between the individual 
twinning elements. Forty-two of the 60 correspondence matrices mentioned above represent 
conventional or classic modes and 18 represent non-conventional modes. 

JPMS 39.: /-2-B 
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A uni-modular lattice correspondence C leading to twinning elements K1 K2 q1 q2 swill also 
have an associated conjugate mode obtained by interchanging K 1 and K2 and q1 and q2 . For 
cubic lattices, the pair of additional modes obtained by interchanging the indices of K1 and 
q1 and of K2 and q2 and reversing the sign of either the old or the new K2 and q1 also has 
the same shear magnitude although the amount of shuffling required will be different if the 
lattice is centred. Bevis and Crocker(351 used the 60 correspondence matrices as input data 
to derive the twinning elements of the corresponding modes for cubic lattices and gave 
examples from all seven classes of correspondence. They published a table showing a selec
tion of their results in the form of 26 different sets of indices derived from the various 
matrices C and c- 1, each giving rise, in the absence of crystallographic degeneracy, to up 
to four different twinning modes by applying the above permutations of indices. Of the 26 
basic modes, 13 are both conventional and compound whilst the other 13 are non
conventional, and II of these have four irrational twinning indices of the form x ± yt where 
x and y are integers. Many of the K1 planes in the compound modes are mirror planes so 
that the shear would reproduce the parent lattice in the same orientation and this operation 
could thus not be described as twinning. However, in such cases the K2 plane is generally 
not a mirror plane so that the conjugate shear represents a possible twinning mode. The 
plane of shear is always rational for the non-conventional modes, and this is a general 
feature of cubic lattices; the orientation relation may be described as a rotation about the 
normal to this plane of shear. 

To investigate the possible twinning modes in the six non-cubic crystal systems, Bevis and 
Crocker first considered the modes which arise from variants of the unit correspondence 
matrix. The unit matrix itself leads, of course, to zero shear in all systems but nine of its 
variants obtained by interchanging rows, interchanging columns and changing the signs of 
rows and columns satisfy the restriction (16) and so may lead to twins in some crystal sys
tems. These nine correspondence matrices are all symmetric and three of them are diag
onal; they all satisfy the condition C = c- 1 and so represent conventional twinning modes 
with at least two rational elements. The nine independent modes of the triclinic system 
reduce to four modes in the monoclinic system, to three modes in the orthorhombic system, 
to a single mode (excluding shears which restore the original lattice) in the hexagonal system, 
to single modes in the tetragonal and rhombohedral systems, and of course to no modes in 
the cubic system. 

The procedure was repeated for a slightly more complex correspondence which has 
20 variants leading to twinning in triclinic systems, reducing to 8, 6, 3, 2 and 1 indepen
dent modes in the monoclinic, orthorhombic, tetragonal, hexagonal and cubic systems, 
respectively. Most of these modes are non-conventional with four irrational elements. 

The twinning modes predicted for the f.c.c. and b.c.c. structures by the no-shuffle, 
minimum shear hypothesis are derived from the correspondence matrices C and C', 
respectively, where 

0 
l T 
- - -

C= 2 2 2 (27) 
T 

- - -
2 2 2 

Shears of magnitude 2 -ton the {Ill} plane lead to twins in the simple cubic, f.c.c. and b.c.c. 
structures but the fractions of parent lattice sites which are sheared directly to twin positions 
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are respectively L 1 and ±, whereas for a twinning shear of the same magnitude on the { 112} 
plane, these fractions are ~, ~ and 1. Several other examples of f.c.c. or b.c.c. modes which 
involve no shuffles are found among the cubic modes listed by Bevis and Crocker, but these 
are all conventional type modes, and non-conventional modes with zero shuffles are only 
possible if shear magnitudes outside the above limits are allowed. 

All reported instances of twinning in f.c.c. structures have the expected {Ill} habit 
plane but in an experimental study of twinning in iron-beryllium alloys and 
iron-nickel-{;arbon martensites, Richman and Conrad<37l and Richman<38l found evidence for 
b.c.c. twins with rational {013} and irrational "{089}" and "{127}" habits. However, the 
iron-beryllium alloys were ordered and they twinned copiously on the {112} planes whilst 
the untempered martensites should have been b.c.t. rather than b.c.c. and in addition 
presumably contained a fine structure of { 112} transformation twins. These factors 
combined with the small size of most of the anomalous twins makes the experimental 
determination of the anomalous modes very difficult, and Green and Cohen<39l were unable 
to find evidence of the anomalous modes reported by Richman. Table I lists all the predicted 
b.c.c. "no-shuffle" modes with s ~ 2 and the modes in which one-half of the lattice points 
shuffle with s ~ I. The {013} habit is seen to be a possible no-shuffle mode, albeit with a 
rather large shear, but the other two of Richman's reported modes are not among those 
predicted. 

Further experiments on twinning in cubic iron-nickel and tetragonal iron-nickel-{;arbon 
martensites were reported by Rowlands et aJ.<24l who found some b.c.c. deformation twins 
with the { 5, 8, 11} habit of Table 1. Although all four sets of indices are rational, so that the 
mode is compound, the orientation relationship is of type II, probably because of a minimum 
shuffle criterion. With a type II orientation relation, only one-half of the atoms have to shuffle 
whereas five-sixths of the atoms would have to shuffle to restore the structure in a type I 
relation. Since the {I01} plane is a mirror plane, the reciprocal mode is not a true twinning 
mode in b.c.c.; a shuffle of half the atoms results in an unchanged orientation of the original 
structure. Rowlands et a/.(40) in a further investigation reported that deformation twins of 
other than {112} type are extremely rare, but they found some fine (possibly transformation) 
twins with a {145} habit which is the conjugate mode to the {013} mode reported by Richman. 
In contrast, Fearon and Bevis<41 l in a later publication, reported only {112} transformation 
twins in a cubic iron-nickel alloy. 

Rowlands et a!. also tentatively identified two tetragonal derivatives of the " { 5, 8, 11}" 
mode in the carbon-containing martensite, both of which correspond to conventional type 
II modes. They point out, however, that non-conventional derivatives of this mode are also 
possible and there seems no reason why these should not occur in suitable circumstances. 
Although only one-half of the atoms are sheared to the correct positions, this mode has a 
smaller shear than the usually observed b.c.c. mode (see Table 1). A possible reason for its 
occurrence in martensites is that in the cubic structure the { 5, 8, 11} twin can propagate 
undeviated across a { 112} twin boundary, and hence across the set of fine parallel {112} twins 
which are produced by the transformation mechanism. Bevis and Vitek<42 l suggested that a 
possible reason for the observation of some fine { 145} twins in martensite is that a 
determining factor is the interfacial energy of the coherent K1 habit plane, rather than the 
magnitude of the shear, since atomistic calculations indicate that the { 145} habit has the next 
lowest interfacial energy after {112}. 

The present position seems to be that the anomalous twinning modes have been identified 
in the b.c.t. structure with no more certainty than in b.c.c. and the overwhelming majority 
of observations on both deformation and transformation twins in b.c.t. martensites show only 



Table I. Predicted and Observed Twinning Modes in Single Lattice Structures 

K, K2 ,, '12 p References to some supporting 
Structure {} {} 0 0 s {} experimental studies 

III 111 
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!TO Cu,<B.IOJ> Ag and Cu alloys,<9.144.IS9.162.16J> Ni,oo.I69.170> AI alloysOL 205> f.c.c. Ill 112 2-2 
and Co-Fe alloys09.Iss.24J.2S9> 

II2 III 
I 

!To Fe and its alloys,047.ISJ.I54.206.207.22J.226.227.229.285-290> Nb and its b.c.c. 112 Ill 2-2 
alloys,osi.224.22S> Mo-Re alloys<I04-I06.Iso.zs6) and Mo<22R> 

T01 m I I 

I2I (no shuffle) 147 Ill 32f2' 
III 

I 

!TO 112 110 001 22 

4T5 53! Ill 
I I m Fe-Be alloys137·38> 013 72/2' 

331 III 
I 

!TO b.c.c. 112 113 22/4 
0 atoms TOI :m I 

I2I Fe-Ni and Fe-Ni-C martensites<24> 5,8,11 Ill 6'!4 
I 

shuffle 145 34I III T39 7/582 311 Fe-Ni alloy<40> 
013 Oil 031 Oil I Too 

f.c.t. 011] Oil Oil Oil y-'-y Too 

[Ill III 111 (2y 2 - I )/2~y ITO 112 
b.c.t. 011 Oil Oil Oil y-'-y !TO 
(no shuffle) 112 IT2 Til Ill (2 -y2)/2l.rc;e !TO 

121 a b Ill (2- 5y 2 + 5y4)1j2y d 
b.c.t. e TOI 313 f (26- 29y 2 + 9y 4 )~/4y g 
0 atoms shuffle) h IIO 33T Ill (4 + 2y 2)l/4 111 
f.c. rhombohedral 

I I I 

Oil Oil 100 100 Oil 82cf(l + 2c)2(1-c)l 
Ill I21 k (2 + 8c + 22c2)l m Hg<4Hs> 

2(1- c)~(l + 2c)~ 
Notes: The two f.c.t. modes are linked to their equivalent b.c.t. modes. All b.c.c. no shuffle modes with s ~ 2 and half-shuffle modes with s ~ I are included, but not 

all the derived b.c.t. modes are listed. y is the axial ratio of the appropriate tetragonal lattice ("" 1.035 for b.c.t. martensite), and c ("" -1/7 for Hg) is the cosine 
of the rhombohedral interaxial angle. The irrational indices a, b and d-m are: 

a=y2-2, 3y2, 2-3y 2; b= -l-y2, 3y2-l, 3-5)1 2; d=2)' 2-l, l-y2, -y2; e= 14-9)12, 8, 26-15)' 2; f= 5-3y2, I +)' 2, 5-3y 2; g= -I, 5-3)' 2, -I; h=6-)' 2, 

10+)' 2,8)' 2;j=-l-5c, -1-c, l-3c;k=-l-7c, -2-6c, 1-c;m=l+c, -2c, 1+5c. 
*Predicted minimum-shear, no-shuffle modes which have not been observed. 
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the dominant twinning mode to have the same elements as the b.c.c. {112} mode and a shear 
I I 

s = 22(a/c)- 2-'i(c/a). This mode is derived from the correspondence (27); it is also the same 
mode as that deduced for the f.c.t. structure. Any b.c.t. structure may, of course, alternatively 
be regarded as f. c. t. with arct = 21abct and when this change is made the { 112} plane of the b.c. t. 
structure becomes the { 101} plane of the f.c.t. structure, with similar changes of the other 
twinning elements as shown in Table l. When face-centred indices are used, this twinning 
mode arises from four of the variants of the unit correspondence matrix and when the axial 
ratio is made equal to unity so that the structure is f.c.c., the shear becomes zero and the 
twinning mode ceases to exist. When the structure becomes b.c.c., on the other hand, the 
shear is not zero but 2-t and the usual b.c.c. crystallography applies. There are equivalent 
relations between the b.c.t. {011} mode and the f.c.c. {Ill} mode, and these are also shown 
in Table I. In general, it is convenient to choose the unit cell of a centred tetragonal struc
ture so that the axial ratio differs as little as possible from unity. Thus ferrous martensites 
with interstitial solutes are described as b.c.t. and have twinning shears of approximately 
2-! since the {011} b.c.t. low shear mode apparently does not operate, whereas indium and 
its alloys are described as f.c.t. and have very small twinning shears. 

Twinning in solid mercury which has a rhombohedral structure is notable, as the only 
other known example of a single lattice structure in which the no-shuffle, minimum shear 
mode is not the operative twinning mode. In contrast to the other single lattice structures, 
the predicted lowest shear mode and its conjugate are not crystallographically equivalent 
for the rhombohedral structure, so that there are two possible K1 planes, namely (001) and 
(110) for shears of lowest magnitude. Early observations suggested that only the (110) plane 
is operative, but later results<43-45J show that the true mode is of type II with an irrational habit 
plane close to (135). The elements of this mode are given in Table l; it involves no shuffles 
and has the second smallest shear, which is nevertheless appreciably larger than the shear of 
the (001}--(110) conjugate pair (0.63 and 0.46 respectively for mercury). The conjugate type 
I mode is seen from Table I to have a (I 11) K1 plane, but apparently does not occur. Crocker 
speculates that this may be because the slip plane is also (Ill) and points out that the same 
reason was previously advanced for the non-appearance of the (001) mode at a time when 
both the slip plane and the twinning plane had been incorrectly determined. It is also 
interesting to note that the observed mode has the same correspondence (27) as the f.c.c. and 
b.c.c. modes whilst the unobserved minimum shear modes are derived from variants of the 
unit correspondence matrix. 

2.6. Twinning in Superlattices 

The twinning modes of the pure components which have single lattice structures are 
normally also found for essentially disordered solid solutions based on these single lattice 
solvents. However, if long-range ordering produces a perfect or imperfect superlattice 
structure, the ordinary twinning mode may become a pseudo mode which will give incor
rect ordering in the sheared lattice. A true twin would then require atoms to change places 
in addition to the shear, but such "interchange shuffles" are clearly not possible at the 
temperatures and strain rates of deformation twinning.< 12l For superlattice structures which 
retain cubic symmetry, all variants of the normal mode become pseudo-modes of the 
superlattice, and the true modes of lowest shear without shuffles haves = 21 or s1. These true 
modes are listed in Table 2, but only the Ll 2 mode actually seems to occur. The B2 mode, 
which is also included among the possible b.c.c. modes of Table l, has the same shear as the 
Ll 2 mode but has not been observed. Some B2 alloys are known to form pseudo twins in 



Table 2. Possible true twinning modes in cubic superlattices021 

Mode no. s K, K2 ,, '12 s2 True twin in Some supporting experimental results 

(a) Modes without shuffles 
1.3 (110) (I II) (001) [Ti2] [iTO] 2 Ll2 Cu3Au149501 and Nil(AI,Ti)<5 1.52> 

I.JT (110) (II2) (IIO) [TiT] [001] 2 82 Ti-Ni and Ti-Fe--Ni alloys<48> 

1.9 (ITO) (I12) (001) [III] [IIO] 8 82, 832, D03 , Ll 2 Fel AI(DOl )1471 

l.9T (ITO) (III) (ITO) [IT2] [001] 8 82, 832, DOl, Ll 2 

(b) Modes with 50% (non-interchange) shuffles 
2.3T (110) (iT4) (iTO) [221] [OOT] I 82 Ti-Ni and Ti-Fe-Ni alloys<48> 

1.2 (001) (120) (100) [210] [OTO] i 82, Ll2 

2.5 (001) (I30) (110) [310] [TIO] I 82, 832, DOl 
1.3 (110) (I II) (001) [Ti2] [iTO] 2 82, 832, D03 

l.3T (110) (II2) (IIO) [TIT] [001] 2 Ll2 
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preference to the higher shear, true mode, whilst in others an alternative twinning mode of 
lower shear in which 50% of the atoms undergo non-interchange shuffles has been found 
experimentally. 

The pseudo mode in B2 is formally a martensitic transformation from the simple cubic 
structure with space group Pm3m to an orthorhombic structure of space group Cmmm. The 
product structure is sometimes erroneously stated to be tetragonal because two of the axes 
of the orthorhombic cell are equal in the idealized case of no change of lattice parameters 
on ordering. Relaxation of the parameters will lead, in principle, to three unequal axes but 
this may be difficult to detect. Since the pseudo mode and the true mode of lowest shear have 
the same K1 plane, it is thus essential to obtain experimental evidence of either the symmetry 
of the product or the magnitude of the shape deformation in order to establish which mode 
is operating. For a two-phase r:t. + B2 structure in alloys of approximate composition Fe3 Be, 
Green and Cohen<39l showed that there is indeed the anticipated change of symmetry in the 
very small, coherent B2 regions within the much larger twins, and they linked this observation 
with the pseudo-elastic behaviour of these alloys. 

Iron- beryllium alloys with compositions near Fe3 Be were formerly reported to form a 
003 superlattice on ordering. Several authors have stated that deformation twinning is 
impossible in this structure, but Fig. 2 and Table 2 show that geometric twinning without 
shuffles may readily be defined. However, the very large shear makes this twinning mode very 
improbable in practice, and there are no reported observations of deformation twinning in 
either the 003 or the B32 structures. Rather similar but less complete results have been found 
for iron-aluminium alloys variously reported to have either the B2 or the 003 structure. Cahn 
and CoW46l found that alloys with less than 50% long range order form pseudo twins, but 
that twinning was suppressed in more highly ordered alloys. Guedo and Rieu<47 l obtained 
evidence for twinning and detwinning in alloys with the B2 structure and super-elastic effects 
in alloys with the 003 structure, but it is uncertain whether or not this latter effect is due 
to pseudo-twinning. 

As an alternative to a pseudo mode or a high shear mode, it is possible that a twin might 
form in a superlattice by a mode which requires non-interchange shuffles. The first evidence 

• I III 

(Q II C IV 

Fig. 2. Atomic site occupancy for B2, B32 and DOJ cubic superlattices. B atoms occupy sites I and 
II in the B2 structure, I and III in the B32 structure and I in the DO, structure (after Christian 

and Laughlin1121 ). . 
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for such a mode was given by Goo et a/.(481 for titanium-nickel and titanium-iron-nickel 
alloys with the B2 structure. The mode, which involves shuffles of half the atoms (q = 4 in 
both the b.c.c. and simple cubic lattices), has the same shear magnitude as the disordered 
b.c.c. mode but K1 = {114} and q1 = <221); the full indices are shown in Table 2. This table 
also gives the other possible modes with 50% shuffles, all of which have higher shear 
magnitudes. The shuffles involved are relatively simple and have been discussed by Goo 
et al. and by Christian and Laughlin.<121 Assuming that all atoms are displaced by the shear 
(i.e. the motif units are not treated as rigid), the atoms which must shuffle are alternately A 
and B on successive planes of shear and are contained in alternate K2 planes normal to the 
plane of shear. Goo et a/. suggested that these atoms are all displaced in the same direction 
(see Fig. 3(c-i)); alternative possibilities in which the atoms move in opposite directions in 
successive K2 shuffle planes or in successive rows of one shuffle plane are shown in Fig. 3(c-ii) 
and 3(c-iii). 

In contrast to B2, pseudo-twinning has not been reported in Ll 2 structures, but there is 
evidence for the true mode of Table 2 in Cu3 Au alloys<49•50l and in microtwins in Ni3(Al, Ti) 
y' phases.(51.521 In their work on Cu3Au, Chakraborty and Starke<501 found that the true mode 
was observed only in alloys with nearly complete long-range order, whilst disordered or 
partially ordered alloys formed twins with the usual f.c.c. mode. The f.c.c. type twinning was 
also observed in highly ordered alloys tested in compression to relatively high strains, which 
would have reduced the initial long-range order. In this case, the twins formed only at applied 
shear stresses an order of magnitude larger than those required to produce true twins of the 
ordered structure. 

(c-ili) l 

l t# ~~ (dl 

Fig. 3. Schematic illustration or the { 114} shuffle mode in the 82 structure. B and A atoms are 
shown by shaded and open symbols, respectively. (a) Parent structure; (b) sheared structure; (c) (i), 
(ii) and (iii) alternative possible shuffles; (d) combined orientation twin (after Christian and 

Laughlin1 121 ) . 
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For non-cubic superlattices of the f.c.c. structure, the variants of the usual f.c.c. mode may 
be divided into six pairs, each comprising a mode and its conjugate and having one of the 
six cubic {110} planes as the plane of shear. Four of the superlattices listed by Richards and 
Cahn153l are tetragonal, with either two or, in the case of Ni4 Mo, four f.c.c. mode pairs which 
give true twins in the superlattice. There are 5, 3, 3 and 3 possible true mode pairs for the 
orthorhombic (Pt2Mo), the two (predicted but unobserved) monoclinic superlattices and the 
rhombohedral (Ll 1) superlattice, respectively. Experimental results have been reported for 
the Ll 0 , Pt2 Mo, DOn and Dla structures. 

The most complete investigation of twinning in the tetragonal Ll 0 structure is that of 
Shechtman et al. 154l for a Ti-Al alloy. The specific variants of the {Ill} <II2) cubic twin 
which formed during deformation were identified and shown to correspond to the true modes 
of the superlattice, and the shear magnitude was also measured. There are several experimen
tal investigations of the CuAu I superlattice with the Ll 0 structure, among which we may 
mention that by Pashley et al. 155l who concluded that {Ill} twinning is an important 
deformation mechanism and speculated that the structure may be changed in some of the 
twins. 

Hansson and Barnes156l and Pashley et al. pointed out that the structure produced by 
pseudo twinning of Ll 0 has a single set of {Ill} cubic planes which are alternately occupied 
by atoms of each species, so that this structure is effectively that of the L 11 (CuPt) superlattice. 
The reverse is also true; the pseudo mode of Ll 1 yields the Ll 0 structure. Unfortunately, there 
are no experimental results on twinning in Ll 1 • 

Except at high temperatures, twinning is frequently the major deformation mechanism in 
alloys with the tetragonal DOn structure, and it has been studied extensively in Ni 3 VI57- 59 l 

and in Al3 Ti. 160·61 l The deformation always utilizes only the four true mod~s (two mode pairs) 
derived from disordered f.c.c. modes. 

Finally, twinning has been established, but not fully investigated in the D l a structure of 
Ni4 Mo162l and in certain nickel-molybdenum-chromium alloys with the orthorhombic Pt2 Mo 
structure.163l The true twins in Ni4 Mo are type I-type II in each conjugate pair, whereas in 
the Ni3 Pt structure, one mode pair gives true twins with combined orientations and four pairs 
give type I-type II orientations. In both structures, it seems probable that true twins are 
formed but the detailed crystallography was not established. 

2.7. Twinning Modes in Hexagonal Close-Packed Structures 

The most important double lattice structure is the h.c.p. structure with axial ratios (y) 
I 

differing by varying amounts from the ideal value of (8/3)2 = 1.633, which corresponds to the 
close-packing of spherical atoms. The metals cadmium and zinc with the rather high axial 
ratios of 1.886 and 1.856, form a separate sub-group, whilst the remaining metals have axial 
ratios ranging from slightly smaller than 1.633 (cobalt and magnesium) down to 1.568 
(beryllium). All the metals twin on {IOI2}, but most of the low axial ratio metals also have 
several other active modes. Additional K, planes reported for titanium, for example, are 
{!Oil}, {1121}, {ll22}, {1123} and {1124}, and additional modes for magnesium include 
{!Oil}, {3034}, {IOI3} and {10I4}. Some of these "anomalous" twinning modes are well 
established; in others, the identification of habit plane traces as twins is open to some 
doubt. Experimental determination of all the elements of a mode is not possible unless the 
shear is measured, and this is rather difficult. 
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Early work showed that the full description of the {1012} mode is 

K, = {1012}; K2 = {1012}; ,, = <IOH); '12 = <IOII). 

Plane of shear= {1210}; s = (y 2 - 3)/3!y (28) 

This is one of the two hexagonal modes derived from variants of the unit correspondence 
matrix applied to the orthohexagonal basis. A systematic investigation of the low shear, 
simple shuffle modes for the ideal axial ratio, shows that there are eleven such modes with 
s < I and q ~ 4, whilst Crocker and Bevis<64) listed fifteen possible modes satisfying these 
restrictions for the axial ratio (y = 1.587) of titanium. For all likely values of y, the {1012} 
mode gives the lowest shear, and there can be little doubt that this is an important factor 
in the universal observation of this mode. However, there is also presumably a lower limit 
to the shear magnitude which can be effectively utilized in twinning; for {1012} twins, for 
example, s becomes zero when y = 3! and the shear direction reverses as y passes through this 
value by varying the composition in, for example, magnesium-{;admium alloys. Experiments 
show that no {1012} twins form near the critical composition.<65) 

A projection of the h.c.p. structure on to the plane of shear is shown in Fig. 4, from which 
it follows that {1012} is a q = 4 mode. The structure is formed by the stacking of two planes 
of shear of type { 1210} in different relative positions, half of the atoms of each lattice being 
contained in each plane. The motif unit thus lies in the plane of shear, which is a mirror plane 
of the h.c.p. structure, so that all four orientation relations of eq. (7) are equivalent, and there 
is no distinction between a type I and a type II twin. As in the f.c.c. and b.c.c. modes, this 
mode is crystallographically equivalent to its own conjugate. 

Some schematic shuffle mechanisms for double lattice modes with q = 4 are shown in Fig. 
5, and comparison with Fig. 4 shows that the probable shuffle mechanism is a degenerate case 
of Fig. 5(e) or 5(f), these two mechanisms being identical when the motif unit lies in the plane 
of shear. The additional atom movements in the shuffles are thus all parallel to 'It or normal 
to K, if the motif unit is regarded as rigid, or parallel to 'It or ,; if the shear is applied 
homogeneously to all the atom sites. The twinning mode is favoured not only by the low 
shear, but also by the very simple shuffle mechanism, shown also in Fig. 6(b). Figure 6(b) 
is drawn for twinning in titanium, where 'It= <TOll), and Fig. 4 corresponds to zinc or 
cadmium (i.e. y2 > 3) so that ,, =(lOTI). 

The predicted twinning mode with the next lowest shear for q ~ 4 has a K1 plane of type 
{2241 }, and has not been observed in any h.c.p. metal. The third smallest shear is a q = 4, 

~ ----------~------- q=3 

'{] -- -----~----- _____ Q q=2 

----~ ----------~1 

Fig. 4. Projection of h.c.p. structure parallel to { 1210}. Open and full circles represent atoms on one 
set of lattice sites on two successive { 1210} planes. Open and filled squares represent atoms on the 

other set of lattice sites in the same two { 1210} planes. 
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(a) 

(c) 

(e) 

(g) 

Fig. 5. Possible shuffling mechanisms in the twinning of a double lattice structure when q = 4. 
(a) Parent structure; (b) sheared parent; (c) type I twin; (d) type II twin; (e) possible type I shuffle; 

(f) possible type II shuffle; (g) alternative type I shuffle; (h) alternative type II shuffle. 
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type I twin with KI ={lOTI}, '12 = (4133), and K2 and 'II irrational. This mode is important 
in the theory of martensite crystallography since it specifies the relationships between the two 
product lattices in some h.c.p. phases produced by transformation from high-temperature 
b.c.c. phases. Such a transformation occurs, for example, in pure titanium and zirconium and 
in many of their alloys and the h.c.p. plates are then often finely twinned on a single set of 
{lOTI} planes. The reasonable assumption that the two product orientations have crystallo
graphically equivalent correspondences with the parent lattice then fixes the 'II direction and 
hence the equivalent twin mode (or its conjugate; both have been observed). A possible 
mechanism for deformation of the h.c.p. product involves the displacement of the {lOTI} 
transformation twin boundaries, as in other martensitic structures,<20> and these twins may 
then be regarded as deformation twins, albeit of a rather unusual type. 

Conventional deformation twinning on {lOTI} has been reported in magnesium and in 
titanium above about 400°C but there was initially confusion between genuine {lOTI} KI 
planes and habits described as {3034} but which are probably associated with double, or 
secondary, twinning. Reed-Hill<66> suggested a {lOTI} low shear deformation mode, quite 
different from the q = 4 transformation twinning mode. This new mode is compound, and 
is the reciprocal of a {IOI3} twinning mode previously noted by Reed-Hill and Robertson;<67> 

it has KI ={lOTI}, K2 = {1013}, 'II= (1012), '12 = (3032), s = (4y 2 - 9)/4(3)1y, q = 8. The 
magnitude of the shear is 0.138 for magnesium, which is appreciably smaller than that for 
the q = 4 mode. Although only one quarter of the lattice points are carried to their correct 
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[1120]=112 [1 011]=112 

Iilla 
1(1 =(1121) 

(d) 1(1 =(1124) 

Fig. 6. Atomic shuffles associated with (a) {1121}, (b) {!OT2}, (c) {1122} and (d) {1124) twinning 
shears in titanium. The K1 plane and the directions 11 1 and 112 are labeled in each case and the motif 
pairs of atoms at each Bravais lattice point are indicated. The atoms associated with the two 
interpenetrating lattices comprising the h.c.p. structure are indicated by circles and squares (first 
lattice) and upright and inverted triangles (second lattice). In (a), (c) and (d), the atoms lie in four 
adjacent {I TOO} planes, circles in the plane of the figure and squares, upright and inverted triangles 
at distances ~3a/2, ~3a/6 and 2~3a/3 below the plane of the figure. In (b) the atoms lie in only 
two adjacent { 1210} planes with circles and upright triangles in the plane of the figure and squares 
and inverted triangles in the next plane at a distance of a/2 below it. The shuffles, if assumed 
formally to precede the shear, are indicated by arrows, and in (c) and (d), motif pairs of atoms 
move together. Shuffle components normal to the plane of the figure are required in (c) and (d); 
these are not shown and depend on whether the orientation relationship is of type I or type II 

(after Crocker and Bevis<64>). 

twin positions by the shear, the atomic shuffles are simplified since the plane of shear {1210} 
is a mirror plane which contains the motif unit, as in the {1012} twins already discussed. An 
alternative compound mode was suggested by Hall,15l using the plane of shear projection 
method, but the shear (s ~ 1.07) is improbably large. 

The observed {1013} twins in magnesium could in principle represent a type I twin with 
two irrational elements and q = 4, but although the shear for this mode is reasonably small, 
the reciprocal of the {lOTI}, q = 8 mode seems more probable. (A q = II mode which has 
also been suggested has improbably complex shuttles.) Experimental observations on 
magnesium indicate, however, that both {10T3} and {lOTI} twins are often components of 
double twins rather than single twins. Reed-Hill166l found that a twin plate or band appeared 
to form by double, or secondary, twinning on {IOT3} and {IOT2} over most of its length, 
except at the tips where there was single {1013} twinning. The tips are thus separated from 
the rest of the twin by internal {IOT2} interfaces, which presumably move outward as the twin 
grows. Similar observations were made for (smaller) twins with habits near {lOTI} in 
agreement with a suggestion168•69l that observed {3034} twins in magnesium are actually double 
twins of {lOTI}+ {10T2} type. 

The predicted twinning elements of the equivalent simple shear mode for the {1013} + 
{1012} simultaneous double twinning are all irrational, but experimental results fit theoretical 
predictions134l quite well. The measured angle between the basal plane and the habit plane, 
for example is 29°, compared with a predicted value of 32° for the {1013} twin alone and 
26°34' for the double twin on the assumption that the latter has a simple shear relation to 
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the matrix produced by simultaneous operation of the two twinning shears. The small 
discrepancy of 2! 0 was attributed by Crocker to accommodation effects and he also showed 
that the expected orientation relations and shear (0.258) of the double twinned region are in 
good agreement with experiment. However, in retrospect, the alternative possibility that a 
previously formed {1013} twin retwins on a {1012} plane over most of its volume seems more 
probable and agrees better with the observed morphology. The secondary twinning would 
slightly rotate the habit to 32°17' from the basal plane, in equally good agreement with 
experiment. 

Two sets of indices were originally suggested tentatively for single {3034} twins; those 
given by Reed-Hill and Robertson(67l have q = 10, and those by Couling and Roberts(691 have 
q = 4, but also have a very large shear. Since there is no mode with q :s; 6 and s < I, it 
seems highly probable that these bands are actually double twins and the combination 
{lOll}+ {1012} is clearly indicated. However, although the experimental orientations are 
reasonably consistent with the theory, the measured habit planes deviate by about 15° from 
that predicted on the assumption of simultaneous double twinning. This discrepancy is 
reduced to -6o if a {lOll} twin is assumed to form first and then to retwin on {1012}, thus 
supporting the secondary twinning hypothesis. The small remaining differences between 
theoretical predictions and experimental results may simply reflect the experimental 
difficulties with such small twins. 

The remaining observed h.c.p. modes are {1121} and { 1014} which both have q :s; 4 and 
s :s; I, and { 1122}, {1124} and {1123} which are all unpredicted within these ranges of q and 
s. The {1014} observations are rather doubtful, but the other modes, and especially {1121}, 
are important in the deformation of several h.c.p. metals. Note that { 1121} is the only mode 
listed in Table 3 with q = 2, i.e. it is the only h.c.p. mode in which all the lattice points are 
carried to their correct positions by the shear so that lattice shuffles are not required. 
Experimental values for the shear in rhenium00l and zirconium(71- 73l generally agree with the 
predicted value of "'0.6, but some confusion was caused by an earlier me•surement041 of 
"'0.2 which implied a very high value for q. It now seems probable that undetected 
accommodation effects were responsible for the reported low value of s. 

The plane of shear for the {I 121} mode is a mirror glide plane {I lOO} so that the two 
orientation relations I and II are in principal different but may be related by a simple 
translation of tc. The shuffles required to produce a type I twin are shown in Fig. 6(a); they 
all involve equal and opposite displacements of the atoms in a motif pair through a small 
distance ("' 0.2a) perpendicular to the K 1 plane (assuming the motif unit to be translated 
rigidly by the shear) as in the Y mechanism of Jaswon and Dove.0 11 Crocker and Bevis164l 

suggested that the simplicity and small magnitudes of the shuffles account for the dominance 
of this mode (together with the smaller shear {1012} mode) in the observed deformation 
behaviour of titanium. 

An interesting feature of the {I 121} mode is that it provides one of the few examples in 
which K2 and q2 correspond to an observed slip plane and slip direction, respectively. Since 
a twin boundary may be regarded formally as a high angle tilt boundary formed by a dense 
array of lattice dislocations of edge type, it could, in principle, be created by the accumulation 
of a large number of slip dislocations in a local region which then re-arrange to form a twin 
with a consequent lowering of energy. 1751 Comparing with the low angle case (polygonization), 
the dislocations must have a lattice Burgers vector in the q2 direction and their glide plane 
must be K2 • According to this model, the twinning mode would be determined by the known 
deformation properties in glide. A knowledge of these elements does not uniquely define the 
mode, but an additional assumption about the fraction of lattice sites carried directly into 
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their correct twin positions, or equivalently about the spacing of the dislocations in the tilt 
boundary, is sufficient to fix all the variables. 

Bullough's formal theory<75) is closely related to the theory of martensite crystallography. 
Figure 7 shows hypothetical stages in the formation of a twin. The combination of the lattice 
invariant deformation, which is a simple shear on K2 in the direction q2 , with the lattice 
deformation, which is a rotation about the direction in K2 normal to q2 , produces the shape 
deformation, which is a simple shear on K1 in the direction of q1 • The more complex case 
of martensite differs formally in having a lattice deformation which is not simply a rotation 
and the dislocations needed to ensure compatibility of lattice and shape deformations are then 
not pure edges. In the application to twinning, however, the dislocation content of the tilt 
boundary is so high that it loses physical significance; if all the lattice points are related by 
the twinning shear, there is one lattice dislocation on each K2 lattice plane intersecting the 
twin interface. This very high dislocation content may alternatively be regarded as zero, since 
an equally valid description of the final situation is that the shape and lattice deformations 
are identical and there is no lattice invariant deformation. Bullough's theory shows the 
relevance of the alternative description if the twin really does form by accumulating slip 
dislocations. 

Since K2 and q2 hardly ever correspond to slip modes, this approach cannot be generally 
valid, but it might apply to one possible mode in the diamond structure (see below) and also 
to the interesting case of hexagonal graphite which forms { 1121} twins with a much lower 
theoretical shear (0.367) than titanium because of its high axial ratio (y = 2. 725). Freise and 
Kelly(76) found that deformation of graphite frequently produced bend planes (tilt boundaries) 
of varying angle in addition to genuine twins, thus lending some support to the Bullough 
model. On the other hand, it does not seem possible to assign much more than formal 
significance to the dislocation model of the completed twin boundary, since the dislocations 

(a) 

112 

(c) 

Fig. 7. Schematic illustration of Bullough's theory of twinning. (a) Original parent lattice. (b) Part of 
the parent lattice is given a homogeneous lattice invariant shear on the K, plane (horizontal in the 
figure); this requires a lattice dislocation of Burgers vector b to glide through each lattice K2 plane, 
as shown. The full lines outline the original unit cells and the dashed lines alternative, equivalent cells 
in the sheared region. (c) Combination of the lattice invariant shear with a rotation about the normal 
to the plane of shear now produces the twin. The total shape deformation is a shear on the K1 plane 

in the 17 1 direction (after Bulloughl75l). 
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must lose their individual identities. Freise and Kelly used the Read-Shockley formula for 
grain boundary energy to deduce that the "dislocations" in the boundary will dissociate into 
partial dislocations, there being one partial on each atomic K2 plane instead of one lattice 
dislocation on each lattice K2 plane. This formal description means only that a twin of this 
type may have an interface in which all the atomic positions match. Statements which are 
sometimes made that in this type of twinning the shear is on the K2 plane rather than the 
K1 plane focus attention on the dislocation aggregation mode, but are rather confusing 
because a proper distinction is not being made between the different kinds of deformation 
shown in Fig. 5. 

There are no other observed h.c.p. modes for which s < I and q ~ 4 but it is well estab
lished that {1122} and {1124} twins occur in some metals. In fact, if q = 6, these two planes 
are conjugate twinning planes of a single mode, as first pointed out by Kiho,<28·29> and the 
shear is only "'0.22 for titanium and zirconium, although it would exceed 0.5 if this mode 
were operative in cadmium or zinc. With q = 6, the shuffles are necessarily rather complex, 
but are considerably simplified in each case because there is a motif unit in the compo
sition plane. Type I and type II twins are possible in principle but since the plane of shear 
is the mirror glide plane {IIOO}, the two orientations differ only by a relative translation 
which in this case may be regarded as parallel to q1• This introduces additional symmetry; 
for example, the atoms in a reflection twin are also related to the parent atoms by a two-fold 
screw rotation about q1 • The atomic structure of the various possible h.c.p. twin inter
faces and the corresponding twinning dislocations are discussed in Section 3; a possible set 
of shuffles for the {1122} type I twin is shown in Fig. 6(c) and for the conjugate {1124} in 
Fig. 6(d). 

Table 3. Predicted and Observed Twinning Modes in h.c.p. Structures 

Kl K2 IJJ '12 References to some supporting 
{} { } 0 0 s q experimental studies 

IOT2 TOI2 IOH To iT (y 2 - 3)/3ly 4 Mg,l66.68.69.307J Ti,<307J c0 ,os7J zr,OBIJ 
zn, (306.307J and Be<307J 

2241 0001 l,I,:!,T:! 1120 l/2y 4 
lOTI lOB IOT2 3032 (4y 2 - 9)/4(3)~ 8 Mg<66.68,69J and Ti<JBO.JSIJ 
lOTI i i 4153 ( 4y 4 - 17y2 + 21) l;2(3)ly 4 
2021 0001 IOI4 IOIO 3l/2y 4 
1121 0001 II:!() 1120 y-1 2 Re,<lOJ Ti,<Jos.J07J Zr,<7J-n.J04J c0 os7J 

(4y 2 - 9)/4(3)ly 
and graphite<76l 

JOB lOTI 3032 IOT2 8 Mgi66J 
lOB 21H (4y 4 - 17y 2 + 2I)l/2(3)ly 4 
i i i (4y 4 - 21y 2 + 36)l/4(3)ly Mg<66J 
({lOB} 'double twinning') 

1120 
I 

1340 T!OO 7320 3-j 4 
1341 T!OI 1120 (4y 2 + 3)l/2(3)ly 4 
1342 TI02 i 1120 (4y 2 + 3)l/2(3)ly 4 
2243 0001 1124 1120 3/2y 4 
IOT4 IOTO 2021 0001 yj3l 4 
1122 1124 1123 2243 2(y 2 - 2)/3y 6 Tioso.JRJ.J07J and zrilRIJ 
1124 1122 2243 1!23 2(y 2 - 2)/3y 6 
3034 
1123 

Notes: i denotes an irrational plane or direction. As explained in the text, some of the reported modes have not been 
confirmed and appear doubtful. For greater clarity, each mode and its conjugate are listed separately. The table 
includes the eleven predicted modes which have s ~ I and q ~ 4 for the ideal axial ratio, and also the more 
probable q = 8 modes for {lOTI} and {lOB} and the q = 6 modes for {1122} and { 1124}. 



30 Progress in Materials Science 

An alternative mode with a {1122} habit128J has K2 = {1122}, q1 = (1123), q2 = (1123), 
s = y - y -I and q = 4; this is the second hexagonal mode obtained from variants of the 
unit correspondence matrix applied to the orthohexagonal basis, and like the {1012} mode, 
it has the K 1 and K2 planes and the q1 and q2 directions crystallographically equivalent. The 
shear s slightly exceeds unity for y = 1.63, but it is less than unity for the axial ratios of 
titanium and zirconium. Although fewer atoms would be required to shuffle than in the q = 6 
mode, experimental work (e,.g. Rapperport and Hartley177l) shows that the q = 6 mode is 
preferred, presumably because of the much smaller shear. 

There remains, finally, the observation of { 1123} twins. HaUI5l found a possible mode with 
q = 2, but this has a very large shear of "'1.9. The lowest shear for this mode with q ::o; 8 
occurs with q = 7; another mode suggested by Kiho has q = 5 and s "'0.5. Both of these 
modes would require very complex shuffles. At present there is thus no good description of 
{ 3034} and { 1123} twinning, and it is possible that the habit plane markings of these types 
represent rather complex double twinning modes. 

Table 3 gives a selection of observed and predicted twinning modes for the various 
h.c.p. metals. It does not include the high shear { 1122} mode mentioned above for which 
q = 4 and three other unobserved q = 4 modes in the Crocker and Bevis list are also 
omitted. These have K1 planes of types {2,8,10,7} (a compound mode) and {1012} and {lOTI} 
(type I modes). 

2.8. Twinning in Other Double Lattice Structures 

The metals arsenic, bismuth and antimony are double lattice structures which may be 
compared to the face-centred rhombohedral structure of mercury since each consists of two 
interpenetrating face-centred rho~bohedral lattices, the origin of the second being displaced 
along the <Ill) direction with respect to the origin of the first. The observed twinning mode 
is not, however, equivalent to the operative mercury mode but corresponds instead to the 
minimum shear mode predicted but not observed for mercury. Experimental observations 
show that the operative K1 plane is always {110} and the conjugate mode with a {001} habit 
is not observed. Crocker showed that with a proper choice of motif unit, the rotation (type 
II) twin involves much smaller atomic shuffles than the alternatives, and it is presumably 
preferred for this reason. 

The least shear hypothesis also explains the observed twinning modes in the white tin 
structure, which may be regarded as two interpenetrating b.c.t. lattices with the origin of the 
second lattice at [~0~] with respect to the origin of the first. Because of the low axial ratio 
of the structure ( "'0.55) the mode previously given for martensite (and equivalently for 
indium) no longer gives the smallest shear. The minimum shear mode is 

(29) 

Both { 101} and the conjugate {301} are observed as K1 planes, the latter being more frequent. 
Both possibilities involve quite small and simple shuffles since the motif unit may be chosen 
to lie in the plane of shear; these represent the degenerate case in which Fig. 5(e) is equivalent 
to Fig. 5(f). The preferred plane is that for which the shuffles normal to the K1 plane are 
smaller than those parallel to the q1 direction. 
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The elements carbon (as in diamond), silicon, germanium and grey tin all have the diamond 
structure in which each atom has four tetrahedrally arranged neighbours around it. The 
structure is equivalent to two inter-penetrating face-centred cubic lattices, the origin of the 
second being at ~H. By analogy with the f.c.c. structure, the twin of least shear for q = 2 has 
both K 1 and K2 planes of type {Ill}, and this is the commonly observed mode in silicon, 
germanium and diamond. Jaswon and Dove pointed out, that the following q = 4 mode is 
possible in the diamond structure 

s = s-~ q = 4. (30) 

This has quite acceptable shuffles, and one-half of the shear of the q = 2 mode. 
No observation appears to have been made of the {113} twins which would be conjugate 

to the above mode, but Churchman et al.08l reported a {123} twinning mode. Bullough(751 

showed that the mode could be predicted by using the parent slip system for K2 and q2 , and 
not allowing atomic shuffles. Unfortunately, the accompanying shear is improbably large, and 
later work makes it appear rather doubtful that {123} twins do in fact exist in this structure. 

The last double lattice structure to be discussed is that of a-uranium which is of con
siderable interest not only because of its industrial importance but also because it twins on 
several systems and provided the first known example of a metallic structure in which type 
II twins form with irrational K1 planes. Alpha-uranium has a crystal structure made up from 
two inter-penetrating base-centred orthorhombic cells, with origins separated by a vector 
[0, -0.31, 0.5]. The structure may be regarded as derived from the h.c.p. structure, and the 
first theoretical analysis by Frank(791 showed that one prominent mode with an irrational K1 

plane equal to "{172}" approximately, and its conjugate with K1 = {112}, which is also an 
observed mode, may be regarded as the orthorhombic equivalent ofh.c.p. {I OT2} twins. There 
is another possible orthorhombic mode which also degenerates into {1012}, but this has a 
larger shear and is not observed. The most frequently occurring twins in a-uranium have 
K 1 = {130}, and Frank pointed out that the corresponding h.c.p. plane is a {1120} mirror 
plane. The above three modes were all discovered in a classic experimental study by (R.W.) 
Cahn(XOJ who also found another twin with K 1 = { 121 }. Cahn correctly identified the twinning 
elements of the {130} (compound), {112} (type I) and "{172}" (type II) modes and also 
proposed that the {121} habit represents a type I mode with q2 =(3ll). 

Most of the a-uranium twinning modes were explained by Jaswon and Dove who also 
predicted a minimum shear, q = 4, mode with K 1 ={Ill} for the type I twin and q 1 = <512) 
for the type II twin. This pair of modes may be regarded as the orthorhombic equivalents 
of the possible h.c.p. type I mode with K 1 ={lOTI} and q2 = <4153) and the conjugate type 
II mode. The type II twins with irrational habit plane near " { 176}" were discovered in later 
work by Lloyd and Chiswik(&IJ who did not, however, detect the {112} and {121} twins found 
by Cahn. The Jaswon and Dove theory is unable to distinguish between the observed and 
unobserved predictions, but a more systematic analysis of the shuffle mechanisms by 
Crocker(82J suggests that the most frequently observed twinning mode, which is compound 
with K1 = {130}, is preferred because of its simple shuffle mechanism (q = 2). No significance 
appears to be attached to the fact that the mode is compound; there are actually four possible 
twinning modes with a lower shear than the { 130} mode, including another compound mode, 
but these all have q = 4. It is not clear, however, why the reciprocal to the { 130} mode, which 
would have a { 110} composition plane, is not observed. 

JPMS 39,.. I-2~C 
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Table 4. Predicted and Observed Twinning Modes in Double Lattice Structures 

Kl K, 'II '12 References to supporting 
Structure { } {} 0 0 s q experimental studies 

Rhombohedral 110 001 001 110 0.27-0.125 I As, Bi, Sb13641 

b.c. tetragonal 101 301 TO! 103 0.11,3 4 sncJOMi 

Diamond 111 liT 112 112 2-' 2 Si1279i and GaAsc1s.m.22o.n1 1 

TI3 TT2 
I 

Ill 332 g-o 4 
ct-uranium '176' 111 512 0.214 4 (HI) 

112 '172' 312 0.227 4 (80) 

'172' 112 312 0.227 4 (80) 

no 110 310 ITO 0.299 2 (80) 

121 '141' '321' 311 0.329 6 (80) 

Notes: Irrational planes or directions are shown as approximately rational indices in quotation marks. Numerical 
values of the shear are given to avoid complexity. Only observed modes are listed. 

The type I twin of lowest shear has a {Ill} composition plane, and its reciprocal type II 
twin an irrational, approximately '{176}', plane. The shuffles in both cases would be quite 
large, and only the type II twin has been found. The shuffles for the mode of next lowest shear 
are simpler, explaining the more frequent occurrence of both the type I, {112}, and the type 
II, approximately ' { 172} ', twins. The type II twin has the simpler shuffles, and is observed 
more frequently than the type I twin. The other two possible modes with q = 4 and a shear 
less than that of the predominant {130} mode, including the low shear compound mode, are 
not observed. 

The { 121} twin found by Cahn, but apparently very rare, cannot be explained by the 
assumption q ~ 4 used in the above predictions. Crocker points out that according to the 
elements assigned to it by Cahn, it is a q = 6 mode and this does not seem too improb
able in view of the q = 6 h.c.p. mode discussed above. In the uranium case, however, the 
shuffles would be much more complex since the motif unit cannot be chosen to lie in the 
K1 plane. 

The twinning modes for the metallic double lattice structures other than h.c.p. are 
summarized in Table 4. 

2.9. Multiple Lattice Structures 

Mechanical twinning is the major deformation mechanism in some non-metallic materials 
with complex crystal structures of low symmetry and many atoms to the unit cell. Although 
the mechanism of such twinning is not well understood, it seems logical to suppose that the 
operative twinning modes are determined primarily by the shuffle mechanisms which depend 
on the structures of the unit cells rather than on lattice geometry. Metallic neptunium 
provides an interesting example of an intermediate case; it has an orthorhombic unit cell 
containing eight atoms which in a (001) projection can conveniently be represented as binary 
motif units of two different kinds. Rechtien et al.183> considered the possible twinning modes 
to be limited by the condition that the lattice must be restored by the shear, i.e. q = I or 2. 
The two lowest shear modes are then 

(31) 

and 

(32) 
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The very small shear of mode (31) suggests that if the shear magnitude remains an 
important criterion, this mode will be preferred. Experiments on polycrystalline specimens 
using colour metallography confirmed that deformation twins form profusely on two habit 
planes of each grain and an analysis of these observations combined with a study of habit 
plane traces in single crystals showed that all the twins were consistent with the above mode. 
From a detailed study of the possible shuffle mechanisms, the authors predict that the most 
likely orientation relationship is a 180° rotation about the q1 direction. 

The most complex metallic structure for which a detailed analysis has been attempted is 
that of a-plutonium which has sixteen atoms in its monoclinic unit cell. There are many 
operative slip systems in this metal, but in a few specimens Sprid841 also observed 
deformation twins with two different habits. The habits have not been identified because of 
the considerable experimental difficulties, but Sebilleau(851 suggested that they are probably 
(00 1) and (20 1 ). In a more complete theoretical analysis Crocker(861 considered five conjugate 
pairs of modes with q = I or 2 and another five pairs with q = 4. The lowest shear mode of 
the second group has a slightly smaller shear (0.129) than that of the first group (0.159) but 
its shuffles are much more complex. Crocker examined all the shuffles with the aid of a simpler 
pseudo-structure with only two atoms in its monoclinic unit cell and deduced that only the 
conjugate pair of modes suggested by Sebilleau which have minimum shear with no lattice 
shuffles is likely to be acceptable. This compound mode is 

(33) 

There is no clear distinction between the two conjugate modes but considerations related to 
the production of twinning dislocations in the interface may favour the (20 1) habit. 

Intermetallic compounds of stoichiometric or near stoichiometric compositions with 
structures not obviously related to an ordering of a random solid solution may neverthe
less deform by twinning; a recently investigated example is the compound Cu2 Sb which is 
the prototype of a number of A2 B compounds with the tetragonal C38 crystal structure. 
There are six atoms in the primitive unit cell, but deformation twinning on K1 planes of 
{112} type was nevertheless observed in Cu2Sb by Paxton and Entwisle(l 31 who were able 
to show by application of the Bevis-Crocker theory that this K1 plane corresponds to the 
lowest shear mode. The crystallographic elements are, in fact, identical with those of the 
normal b.c.c. or b.c. t. mode, but since the axial ratio is 1.526, the shear is in the opposite 
sense and is only about 0.15 (see Table I). The C38 lattice is primitive tetragonal, so that 
only one-half of the lattice points (and hence one-sixth of the atoms) can be carried to 
their correct twin positions by shear alone. It is remarkable that Cu2 Sb twins so readily 
despite the required shuffles, and it would be interesting to investigate whether or not the 
other C38 structures (which fall into two groups of different axial ratios) also deform by 
twinning. The second group have axial ratios of about 2.0, and the { 112} mode then has a 

I 

larger shear of about 2-2. 

2.10. Choice of Twin Mode 

From the above comparisons of theory and experiment, the factors which appear to 
determine the operative deformation twinning modes may be deduced. Bilby and Crocker( 231 

suggested that the operative twinning mode should: 

(a) have a small shear, 
(b) require only simple shuffles (i.e. have a small value of q ), 
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(c) require, if possible, only shuffles of small magnitude, and 
(d) have shuffle displacements parallel to q1 if large shuffles are essential. 

It appears that criteria (a) and (b) generally enable the most likely twinning modes to be 
predicted, but (c) and (d) may have to be invoked in some cases, e.g. to distinguish between 
a mode and its conjugate. 

Laves(87•881 defined a "shuffle parameter" as the ratio of the average shuffle displacement 
to the interatomic distance, but for any given structure it is not clear that this provides an 
adequate description of the complexities of different shuffles. In general, the shuffles might 
be expected to correlate either with the energy of the interface or the kinetics of its motion, 
or both, and thus the influence of (b), (c) and (d) on the operative modes is easy to understand 
in a general way. It is not so clear why a small shear should be preferred since the volume 
of twins required to produce a given plastic strain varies as s _, and thus increases as the 
twinning shear decreases. However, the stress field of an enclosed lenticular twin of given 
aspect ratio varies as s2, so that it should be easier to produce a given strain by a large number 
of small shear twins rather than a small number of large shear twins. 

3. TWIN INTERFACES AND TWINNING DISLOCATIONS 

3.1. Fully Coherent Rational Twin Interfaces 

The K1 plane of the parent structure is the only invariant plane when the twinning shear 
is applied. Provided K1 is rational, a geometric interface between matrix and twin parallel to 
K, may thus contain a set of lattice points common to both matrix and twin. This implies 
that the twin lattice points, or some integral fraction of them, are specified by eq. (I) with 
the origin of the coordinate system located on one of these interface lattice points. A 
coincident site interface of this type is similar to an intrinsic stacking fault as originally defined 
by Frank,(891 and the whole twin may then be regarded as a stack of such faults. This intuitive 
structure is almost certainly very close to the true atomic structure of a {Ill} K1 interface 
in a f.c.c. twin since, with a pairwise model of the atomic interactions, differences between 
the various structures corresponding to ideal close-packing of spheres only appear when the 
computations are extended to at least third nearest neighbours. Thus the energies of an 
intrinsic stacking fault in the f.c.c. structure, the {Ill} twin boundary and the {Ill }c//{0001 h 
interface between the f.c.c. and h.c.p. structures are all likely to be similar and small, and 
this is confirmed by the calculations of Vitek(901 on stacking faults and of Sutton and 
Christian(911 for the cubic-hexagonal interface. 

In some cases, however, the twin lattice points may be translated away from coincidence 
by a non-repeat vector of the lattice. The first example of a possible interface of this type 
came from the computer simulation by Vitek(921 of a { 112} twin boundary in b.c.c. crystals. 
Vitek's computation was motivated by a previous failure(901 to find any metastable configur
ation for a single layer intrinsic (shear-type) stacking fault on either the {110} or the {112} 
planes of a b.c.c. structure. Since a twin corresponds macroscopically to a stack of { 112} shear 
faults with relative displacements of i<TTl), Vitek next investigated the minimum number 
of faults which would be mechanically stable. He found this number to be four with relative 
displacements of approximately!, 1, 1 and t times the expected value, and the structure of 
a twin interface with a large number of planes on each side of the interface was similarly found 
to correspond to a first plane displacement of 12-<TT I). The structure was confirmed by 
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Bristowe and Crocker<931 and it is shown in Fig. 8 together with the coincident site interface. 
The new "isosceles" interface is translated from the coincident site interface by a vector 
t = h<I II), with a magnitude of one-sixth of the interatomic distance, and although the 
reflection symmetry across K1 has been destroyed at an atomic level, the new arrangement 
is also highly symmetrical; it is, for example, the same when viewed from either side of the 
interface. Note also that the interface plane is an atomic plane in Fig. 8(a), but is mid-way 
between two atomic planes in Fig. 8(b ). 

Vitek originally concluded that the configuration shown in Fig. 8(b) will have the lowest 
energy except possibly for very "soft" atoms which have a pairwise potential in which the 
repulsive part increases relatively slowly with decreasing separation. Later work, however, 
indicates that the computed equilibrium structure is sensitive to the boundary conditions and 
method of relaxation as well as to the potential, so that it is not easy to predict the equilibrium 
interface structure for a real material. Some calculations<93•941 indicate that the lowest energy 
structure may not be the same in all b.c.c. metals, and also that the difference in the energies 
of the two structures may be very small in some materials. The possibility of different 
configurations coexisting in the same interface then arises and has implications in the 
description of interface steps (twinning dislocations). 

Simultations of the interface structures of the main h.c.p. K1 interfaces, namely { 1012}, 
{1121} and {1122}, have been made by Serra and Bacon<951 using three different two body 
potentials. Only one equilibrium configuration was found for the { 1012} interface, and the 
parent and twin structures are mirror images in the interface. The plane of the interface is 
an atomic plane formed by the coalescence of two adjacent original atomic planes which make 
up a corrugated lattice plane of type {1012}, and the orientation relation is "combined", i.e. 
both type I and type II. 

The stable interface of a {1122} twin is also an atomic plane of reflection according to 
the calculations of Serra and Bacon, but since the motif unit lies in the {1122} planes, 
all the lattice planes parallel to the interface are flat in this case. The interface structure 
is thus that of a type I twin, and was the only stable interface found for so-called equilib
rium pair potentials. When non-equilibrium potentials were used, i.e. when the crystal 
was subjected to an external pressure which corresponded roughly to the Cauchy press
ure, an additional stable interface was formed by relative translation of the two sets of 
atoms by 

1 -- 1 --
t = 2 (1123 > ~-< 1123 > 

6(1 +)I ) 22 

(a) (b) 

Fig. 8. Possible { 112} twin boundary structures in b.c.c. crystals. The conventional coincidence site 
(CSL) boundary is shown in (a) and the less symmetric 'isosceles' boundary predicted by Vitek1921 and 
by Bristowe and Crocker1911 from atomic simulations is shown in (b). Atoms on two successive {I TO} 

planes are represented by circles and squares. 

(34) 
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parallel to the ,, direction of the q = 6 twinning mode. This is the translation required to 
obtain a type II interface, but the two-fold axis is midway between two atomic K, planes. 
This atomic symmetry might, however, be built into the pair potential model since the 
potentials used by Serra and Bacon do not well represent real materials. One of the 
non-equilibrium potentials also gave a third less symmetrical atomic model of the interface 
produced by an alternative displacement parallel to,,, but this was not stable when the other 
potentials were used. 

Two different starting configurations were considered by Minonishi et af.<961 for the atomic 
structure of a {1121} interface, and these were called R and D respectively. Using a 
Lennard~Jones potential, they found two correspondingly stable relaxed structures for the 
interface, neither of which corresponds to mirror symmetry on an atomic scale. Similar results 
were obtained by Serra and Bacon who pointed out that the lower energy (relaxed D) 
interface may be obtained from the mirror interface (unrelaxed R) by moving alternate basal 
planes in opposite senses through ±12<IIOO) to change the stacking from .. ABAB .. to 
.. ACAC .. The configuration of the higher energy (relaxed R) interface is similar, but it 
has a row of vacancies in each B~C transition region. The relaxed D interface again has 
an atomic interface plane, but in this case it is an actual atomic plane of each crystal, 
not a coalesced lattice plane. Serra and Bacon point out that the atom positions are con
nected by a two-fold axis along ,, although this symmetry was not present in the 
starting configuration. 

The atomic structure of the {lOll} twin has been computed more recently by Serra et a/.<971 

who used the best of the pair potentials of Serra and Bacon which gives a value of y = 1.619 
for the axial ratio of a stable perfect crystal. The relaxed structure of the {I 0 I I} interface 
is similar to that of the {1012} interface and it also forms from the unrelaxed, highest 
symmetry form of the bicrystal by the coalescence of two separate atomic planes into a single 
plane. The atoms in the coherent interface plane are subjected to alternating tensile and 
compressive (internal) hydrostatic pressure, but the energy of the interface is quite low, and 
is in fact the smallest computed energy for the four h.c.p. twins considered by Serra et a!.; 
the others have energies which increase in the order {1121}, {1122} and {1012}. 

Computer simulations of interface structures normally utilize static relaxation techniques, 
so that the fully relaxed structure should represent the equilibrium configuration at absolute 
zero. The main reservation to be made about such simulations arises from the limited validity 
of pairways interactions in describing the behaviour of real materials. Recent advances in 
basic theory and in computer technology now make it possible in principle to employ much 
more sophisticated "many body embedded atom potentials", but these difficult computations 
are not yet available. There are two further reservations about the use of simulations, namely 
that the static structure may change appreciably at higher temperatures or under the dynamic 
conditions of twin formation. 

3.2. Elementary, Zonal, Complementary and Partial Twinning Dislocations 

A step in a rational coherent twin boundary has a stress field resembling that of a 
dislocation in a lattice and is called a twinning dislocation. Twinning dislocations were first 
discussed by Vladimirskiy<981 and Frank and Vander Merwe;<991 the equivalent Burgers vector 
of a step of height h is 

(35) 
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where I is a unit vector parallel to '11 • Unless there are near degeneracies in the energies of 
different interface configurations, the flat portions of the interface separated by the step must 
have the same (equilibrium) structure, so that the smallest possible step height is equal to the 
spacing d of the lattice planes (not necessarily the atomic planes) parallel to K1 • Such a step 
of minimum height is called an elementary twinning dislocation and since the elastic energy 
is proportional to the square of the Burgers vector, twinning dislocations with step heights 
which are multiples of d should tend to dissociate spontaneously into elementary twinning 
dislocations. However, when the lattice correspondence does not relate primitive cells of the 
two lattices, the two parts of the interface separated by a step between adjacent lattice planes 
must, in general, have different structures, and an elementary step may then be energetically 
unfavourable. The lattice shuffles which accompany all twinning modes with q > 2 imply that 
the interface structure repeats only at every q lattice planes parallel to K1 if q is odd, or at 
every ~q planes if q is even, so that the Burgers vector associated with a step between two 
equivalent regions of coherent interface has a minimum magnitude of 

bT=qds (q odd) 

bT = ~q d s (q even). (36) 

This geometrical property of a particular twinning mode was first pointed out by Thompson 
and Millard<JOO) for {1012} twins in h.c.p., and they called the step of minimum height to 
reproduce the interface structure a "double" twinning dislocation. More generally, such steps 
are now called "zonal" twinning dislocations.(73·101 •102> 

Twinning dislocations may be of edge, screw or mixed type and have many of the properties 
of ordinary dislocations; in particular, they can glide in the interface plane under the action 
of a shear stress, enlarging or shrinking the twin as they do so. A flat, lenticular twin within 
a matrix (see Fig. 9) may be modelled as a series of loops of twinning dislocation, the loop 
diameter increasing as the central plane of the lens is approached. Such a twin can enlarge 
its radius simply by expansion of the twinning dislocation loops, the ratio of diameter to 
thickness becoming greater as it grows in this way unless new loops are formed on the central 
(flat) interface regions. 

The dissociation of a zonal twinning dislocation into a group of q or ~q elementary twinning 
dislocations lowers the elastic energy but increases the surface energy. The elementary 
dislocations have parallel Burgers vectors and hence repel each other until separations are 
attained at which these repulsive forces are just balanced by the attractive forces due to the 
excess energies of the various interfaces over that of the minimum energy interface. This 
situation is analogous to the dissociation of a lattice dislocation into partial dislocations, and 
the zonal dislocation which is a repeat step of the interface may be regarded as an extended 
dislocation comprising partial or non-repeat steps separated by "faults", i.e. by regions of 
higher energy interface. If the energies of these interface faults are sufficiently small, however, 
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Fig. 9. A model of a lenticular twin. 
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the separation of the elementary twinning dislocations will become large and the concept of 
a zonal twinning dislocation as a separate entity is no longer required. 

Zonal twinning dislocations have often been used to discuss twinning in superlattices in 
which the minimum step height to give an identical interface structure may be increased to 
some multiple of that in the disordered structure. The multiple height step is then often 
referred to as a zonal twinning dislocation, although this is not strictly correct, since q is 
now being obtained with reference to the lattice planes of the disordered structure rather 
than to those of the superlattice. It follows, moreover, that the formation of true twins by 
the motion of such steps would require interchange shuffles at the interface. The con
fusion arises because in the fully ordered structure there may be atomic planes parallel to 
K1 which are equi-spaced and more numerous than the lattice planes. However, in any 
multiple-lattice structure, it is possible to envisage interface steps between atomic planes 
in which the step height is smaller than that of the elementary twinning dislocation as 
defined above. Although it would be possible to revise the definition of the elementary 
twinning dislocation to make it correspond to the minimum step between atomic planes, 
this would cause difficulties since the twin cannot grow by motion of such a step, and 
the atomic planes are not necessarily equally spaced. Moreover, step defects in which the 
effective step height is less than the spacing of atomic planes may also arise in some 
structures by dissociation of elementary twinning dislocations. It is thus preferable to retain 
the definition of an elementary twinning dislocation in terms of the spacing of lattice 
planes, whilst noting the possibility that step defects of smaller Burgers vector may be 
present in some interfaces. Naturally the two interface structures connected by such a 
step are non-equivalent for any value of q, but in the special case of superlattice struc
tures, this difference may be confined to changes in the chemical binding, so that the 
extra energy of the unfavourable interface is similar to that of an anti-phase bound
ary. The rather loose usage to be found in treatments which regard such a step as an 
elementary twinning dislocation may thus be compared with the way in which extended 
superlattice dislocations are often described as dissociated into "lattice" dislocations, 
i.e. into dislocations with Burgers vectors which are repeat vectors of the disordered 
lattice. 

Various other step defects may be found in rational K1 interfaces. If adjacent regions of 
a single planar interface have different configurations of nearly equal energies, the line of 
separation is a step type defect with a step height equal to a fraction of the spacing of lat
tice K1 planes and hence an equivalent Burgers vector smaller than that of an elementary 
twinning dislocation. This applies specifically to the coherent {112} interface of a b.c.c. twin 
for which the two possible structures of Fig. 8 may have very similar energies. Bristowe and 
CrockerC93> pointed out that this leads to the possible dissociation of an elementary twinning 
dislocation into two partial twinning dislocations separated by a strip of interface in the 
configuration which has slightly higher energy. Note that the component partials of the 
extended twinning dislocation have parallel Burgers vectors, as do the component elemen
tary dislocations of an extended zonal twinning dislocation. In contrast to most extended 
lattice dislocations, there is thus no applied shear stress orientation which will tend to separate 
the partials. 

When a zonal or, where appropriate, an elementary twinning dislocation is displaced along 
a defect-free K 1 interface, there is no first order change in energy, other than the self 
energy of the dislocation, which may oscillate with the periodicity of the lattice in the direction 
of displacement. The dislocation may thus be described as glissile, and its motion pro
vides a mechanism for the growth or shrinkage of the twin, as described above. In a real 
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crystal, there will also be both long-range and short-range additional contributions to the 
stress opposing motion which arise from elastic and local interactions with point, line and 
surface defects in the matrix. The net opposing force may be regarded as a friction stress 
limiting the velocity of the twinning dislocation (or, more directly, of the interface), but it 
is not known in most cases which interactions are most significant. The lattice resistance 
is a kind of Peierls~Nabarro force, and it depends strongly on the type of bonding and 
hence on the detailed atomic structure of the step or dislocation core. In particular, if the 
atomic binding is highly directional, as in materials like zirconia, the dislocation core is 
likely to be very narrow and the Peierls stress correspondingly high. However, for many 
metallic materials, the twinning dislocation core may extend over several atomic planes 
(i.e. the interface step is diffuse), and the lattice frictional resistance may be expected to be 
relatively small. Similar conclusions apply to martensite. 

In early treatments of possible growth processes, it was generally assumed that the core 
of a twinning dislocation is similar to that of a lattice dislocation and is thus quite narrow. 
Some justification for this assumption arises from the magnitudes of the Burgers vectors in 
cubic metals and especially from the close similarity between the elementary twinning 
dislocation in f.c.c. metals and the Shockley partial. (The elementary twinning dislocation for 
f.c.c. has the same Burgers vector as a Shockley partial and a step height equal to the spacing 
of the {Ill} planes.) Since there is probably only one stable configuration of the interface, 
there are unlikely to be any partial twinning dislocations in this structure, and although 
defects with other Burgers vectors of the DSC lattice are theoretically possible, they seem 
unlikely to occur in practice. For example, a step with the same height but a Burgers vector 
in the anti-twinning direction of twice the magnitude of a Shockley partial would be an 
elementary twinning dislocation of the 1.3 mode of Table I. However, if such a step were 
to glide in the K, plane, the atoms in successive layers would have to squeeze past each other 
in effectively A--A stacking, which would be energetically impossible. Thus apart from 
elementary twinning dislocations, the only other likely defects in f.c.c. twin boundaries are 
pure steps with no strain field. Pure steps can arise in annealing or growth twins, if elementary 
twinning dislocations with Burgers vectors in the three different but crystallographically 
equivalent < 112) directions of a particular {Ill} plane are formed on successive {Ill} planes 
and then glide together to form a triple step of zero net Burgers vector. It is probable that 
in a deformation twin, the vast majority of the twinning dislocations will all have the same 
Burgers vector, but a pure step may then be formed because three elementary twinning 
dislocations on successive {Ill} planes have a total Burgers vector oft< 112) which may be 
cancelled if a lattice dislocation of opposite Burgers vector, or more probably two lattice 
dislocations with a net Burgers vector opposite to that of the three twinning dislocations, 
glide until they become coincident with the step. This means that, at least in principle, 
steps with a height of three interplanar spacings, or some integral multiple of three, may 
be pure steps. Pure steps may also be formed in b.c.c. twin interfaces, as discussed in 
Section 6.2. 

Experimental evidence that small steps in twins are fairly sharp discontinuities was first 
provided by direct observation of elementary twinning dislocations which are visible when 
foils of f.c.c. copper (Mahajan et a/. 0031 ) or b.c.c. molybdenum~rhenium alloys (Hull;0041 

Mahajan<105- 1061) containing very thin tapering twins are examined in the transmission electron 
microscope. However, computer calculations by Yamaguchi and Vitek<941 and Bristowe and 
Crocker< 1071 indicate that twinning dislocations, at least in b.c.c. structures, are appreciably 
wider than lattice dislocations, and this may have important implications for the theory of 
twin growth. The calculations of Bristowe and Crocker<107·1081 have also revealed the possible 
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existence of other step defects (complementary and zonal twinning dislocations) in b.c.c. twin 
boundaries. 

The complementary twinning dislocation was originally introduced by Sleeswyk.(l 09l It has 
the same step height as the elementary twinning dislocation but for the same sense of the step, 
its Burgers vector is twice as large and in the opposite direction, so that its structure is quite 
different. Sleeswyk considered the hypothetical dissociation of a twinning dislocation in a 
tapering twin into a lattice dislocation and a complementary twinning dislocation according 
to the Burgers vector equation 

i< Ill)=!< Ill)+ t<HI). (37) 

The reverse process of combination of a twinning dislocation with a lattice dislocation of 
antiparallel Burgers vector is clearly an equal formal possibility; in one case, the lattice 
dislocation is emitted from the interface, and in the other case the opposite lattice dislocation 
glides into the interface. In fact, however, with the pairwise potentials that were used by 
Bristowe and Crocker, an isolated complementary dislocation is unstable and will dissociate 
into elementary, partial and zonal twinning dislocations. Motion of a complementary 
dislocation along the KI plane is thus an unlikely process, but if it were to occur on successive 
(112) planes, the twinning mode produced (see Table 1) would have a shear of magnitude 
J2 with KI = {112}, K2 = {110}, 'II= <I 1 I) and '12 = (001). 

Bristowe and Crocker also found a step defect of double step height but Burgers vector 
of type i <Ill) and they called this a zonal twinning dislocation. The existence of such a 
dislocation in a {112} b.c.c. twin interface was not predicted prior to the computer simulation, 
but it must be emphasized that this is not a zonal twinning dislocation of the usual b.c.c. twin 
mode. Since the Burgers vector has the same magnitude as that of the usual twinning 
dislocation and the step height is twice as large, it follows that propagation of such a 
dislocation through a series of { 112} planes will produce a shear of J2/4. The corresponding 
twinning mode has KI = {112}, K2 = {332}, 'II= <I 1 I), '12 =<I 13), q = 4, so that one-half 
of the lattice points (atoms) must shuffle as the interface moves forward. (This mode is listed 
in Table 1.) The defect is thus correctly described as a zonal twinning dislocation of this 
hypothetical twinning mode with a smaller shear than the usual mode, but the usage is rather 
loose when the defect is present in the boundary of a deformation twin which has formed 
by a different shear, or in the boundary of a non-deformation twin. 

The twinning dislocations found by Bristowe and Crocker for b.c.c. structures show that 
defects in coherent twin boundaries may be regarded in two different ways. If no restrictions 
are imposed on the mechanism of formation of an interface of given structure, the set of 
possible Burgers vectors associated with a step of fixed height in this interface is obtained 
by taking any representative Burgers vector of the set (given, for example, by eq. (33)) and 
adding to it any lattice repeat vector; these vectors form a unique set and may be derived 
from any representation of the lattice relations. Pure steps may be envisaged if and only if 
this set contains a zero Burgers vector. 

It is clear that the complete set of Burgers vectors of "perfect" interface dislocations 
(i.e. linear defects which separate two regions of identical interface structure) is identical with 
the set of vectors which constitute the DSC lattice of Bollmann.<IIO) These vectors link the 
sites of the parent lattice to those of the twin when the two lattices are in a coincident 
orientation and position, i.e. when t = 0. For a single lattice structure, the DSC dislocations 
are the only vector translations which reproduce the interface structure. The vectors are 
independent oft and each may be associated with a step of height d. However, in a general 
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discussion of possible defects which reproduce the structure of an interface, Pond(25- 26J and 
Pond and Vlachavas(27l have shown that in non-symmorphic crystals (i.e. crystals containing 
mirror-glide planes or screw-rotation axes) additional dislocation type defects may in certain 
circumstances exist in an interface and reproduce the interface structure. Whereas defects in 
single crystals are characterized by the symmetry operations of translation, proper rotation 
or proper screw-rotation, interface defects are characterized by combinations of symmetry 
operations, one from each crystal. 

In Pond's formulaton, the twinning dislocations considered above arise from the broken 
translational symmetry of the interface, but in some interfaces in non-symmorphic crystals, 
it is also possible to produce interface defects of translational character by combinations of 
point symmetry operations which are aligned but contain intrinsic glide components which 
are either not equal or not parallel. These "supplementary displacement dislocations", unlike 
the DSC dislocations, have Burgers vectors which are modified by any displacement t which 
breaks the translational alignment of the symmetry elements of the two crystals. Moreover, 
in general, such defects arise only at the junction between two differently orientated (but 
equivalent) interfaces and they only represent defects in a single interface when special 
conditions have been satisfied. The general theory of such defects is too complex to be 
included here, but an interesting special case arises in connection with {1121} twinning in 
h.c.p. crystals. 

In the h.c.p. structure, the only stable twinning dislocation expected for the {1012} mode 
is the zonal dislocation of double step height first discussed by Thompson and Millard. This 
has a Burgers vector 

(38a) 

so that 

(38b) 

The Burgers vector thus has magnitude a/(SI)L:::=_ a/7 for ideal axial ratio, y = c/a = (8/3)1, 
but this magnitude varies rapidly withy. Computer simulation of the structure using two body 
potentials shows that the width of the twinning dislocation is sensitive to the assumed 
potential. 

As already noted, the probable twinning mode for h.c.p. {1122} twinning has q = 6, 
so that the important twinning dislocation will be expected to be zonal, with a step height 
equal to three interplanar spacings of the {1122} lattice planes. The Burgers vector of this 
dislocation is 

(39a) 

and 

(39b) 
I I 

For ideal c fa, the magnitude lbT I is (4/33)2a =:::.a /82. The core structure of this dislocation 
depends on the detailed shuffle displacements of 3 out of every 4 atoms, and Serra et a/.11111 

made computations for three different possibilities. The energy and width of the step were 
found not to be very sensitive to the shuffle model used, but to depend on the potential. 
Calculations were also made for two other possible step defects in this type of boundary, 
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having step heights of one and four interplanar spacings, respectively. These steps would be 
twinning dislocations of other hypothetical twinning modes for which K1 = {1122}; in the 
single step case, the mode has a high shear of - 1.22 and the four layer step has more complex 
shuffles. Thus these dislocations are probably not important in the mechanism of deformation 
twinning. 

Since no lattice shuffles are involved in { 1121} twinning, an elementary twinning dislocation 
reproduces the interface structure. This dislocation is specified by 

1 --
br = 3(4)1 2 + l) (1126) (40a) 

and 

(40b) 

For ideal axial ratios, the Burgers vector is br ~ (1/35)(1126), and has magnitude (3/35)~a. 
When this dislocation was simulated, however, Serra et al. found that it decomposed into two 
dislocations, each with one-half of the above Burgers vector, as first envisaged by Minonishi 
et a[.<96l These two dislocations each have a step height equal to the separation of atomic 
planes parallel to the interface, i.e. to one-half of the spacing of lattice K1 planes. Although 
this ordinarily would not reproduce the interface structure, the non-alignment of the 
translational components of the mirror glide symmetry of the { 1 TOO} plane of shear ensures 
that the two interfaces bounding such a step have equivalent structures and energies. This 
is an example of the "supplementary displacement dislocations" analysed by Pond. With two 
of the three potentials used, Serra et al. found the core width of both edge and screw twin
ning dislocations of this type to be very wide, implying that the steps may be very 
mobile. 

The final h.c.p. K 1 interface for which atomistic simulations of twinning dislocations have 
been made is the {1 0 T 1} plane. As discussed in Section 2. 7, the deformation twinning mode 
found experimentally for this plane is, most unusually, a q = 8 mode, whilst the displacement 
of the boundaries of the observed {1 OT 1} transformation twins may be regarded as a q = 4 
mode. Thus there are two dislocations of interest with step heights corresponding respectively 
to 4d and 2d where d is the spacing of lattice planes parallel to { 10 T 1}. The Burgers vector 
of the zonal twinning dislocation of the deformation mode identified in magnesium and 
titanium is 

with magnitude 

4y 2 -9 --
br = -4 -2 - (1012) 

)I + 3 

which is 5/(123)~ for the ideal axial ratio. 

(4la) 

(41 b) 

The direction of Burgers vector of the {lOTI} transformation twin is strictly irrational, 
so that it is not possible to write a simple analytical expression for it. However, if y has its 
ideal value, the Burgers vector becomes rational but has very high indices (13,41 ,28, 15 >. The 
magnitude of br is 

lbrl = [3(4y 4 - 17y 2 + 21)/2(4y 2 + 3)]~a (42) 
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and this is "'0.448 for the ideal axial ratio. Since it is necessary to have periodicity along the 
dislocation line in order to make possible a computer simulation of the atomic structure, this 
twinning dislocation, unlike the others considered above, could only be simulated in a mixed 
orientation, intermediate between edge and screw. 

For any rational twin interface, the atomic configuration at a step will adjust itself wherever 
possible so as to minimize the effective Burgers vector. This implies that the structures of 
minimum height steps in corresponding boundaries of annealing and deformation twins are 
likely to be identical since the operative twinning mode of the deformation twin is likely to 
correspond to a minimum shear and hence to a minimum Burgers vector condition. However, 
in f.c.c. and some related structures, there are three crystallographically equivalent directions 
of the Burgers vector in the coherent interface, all of which are equally likely to be present 
in an annealing twin, whereas in a deformation twin, the steps will predominantly have 
Burgers vectors parallel to the physical q1 direction. 

Some authors have distinguished between grain boundary dislocations and grain boundary 
steps for the general grain boundary, and have suggested that there is no strain field associated 
with an ideal step. However, it needs to be emphasized that formation of an ideal step is rarely 
possible even when the step height is a multiple of the interplanar spacing; a necessary 
condition is that the plane defined by the step length and the riser is a lattice plane of a 
coincident site lattice of the two crystal lattices. In the cases of coherent twin boundaries on 
{Ill} planes of f.c.c. crystals or {112} planes of b.c.c. crystals, pure steps are possible when 
the step height is some multiple of three interplanar spacings. 

3.3. Twins with Irrational K1 Interfaces 

It will be noted that except in cubic structures, the magnitude of the effective Burgers 
vector of a twinning dislocation depends on at least two independent lattice parameters, and 
is not generally an integral fraction of a lattice vector. Partial dislocations (fault vectors) of 
this kind are quite acceptable provided q1 and K1 are both rational. The definition of a 
twinning dislocation simply as a step in the coherent K, interface then continues to fix bT 
without ambiguity, as, for example, in eqs (38-40). Although it should be noted that in 
any dissociation model in a structure in which the shear magnitude depends upon a crys
tallographic parameter such as cIa, the splitting of the original dislocation also varies with 
the appropriate parameter, this is only what is expected from the geometry of the monolayer 
fault. Indeed, there is no particular conceptual difficulty in the definition of bT for type I 
twins, in which the atomic displacements are (generally) in an irrational direction. Steps in 
the rational K1 interface can then be regarded as twinning dislocations with irrational 
directions of the Burgers vector, and this seems likely to be a better representation of the 
physical situation than a model in which two or more steps with different rational directions 
of displacement alternate so as to produce net displacements in the required irrational 
direction. However, the concept of a step in the interface finally breaks down for type II twins 
since if K1 is irrational, the spacing of lattice planes parallel to the interface is indefinitely 
small. 

The theory of the atomic structure and of defects in irrational (or very high index) inter
faces is difficult and not well developed, and the following description is simplified and partly 
intuitive. On an atomic scale, an irrational interface must consist of rational facets and in 
the general case a minimum of three differently orientated facets would be required. However, 
since the interface of a type II twin necessarily contains one rational direction (q1 ), it is 
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possible to model it as alternate facets of two rational planes. The most appropriate model 
will generally consist of facets of minimum size parallel to the two closest-packed planes in 
the zone axis of 'It. If the smaller facets (P) all represent transitions between adjacent lattice 
planes of the larger facets (Q), and are spaced along Q either uniformly or in some reg
ularly repeating sequence at multiples of the distance at which adjacent lattice planes of P 
intersect Q, the average interface will remain rational. However, as the period of the repeat 
pattern increases, the Miller indices of the interface become higher and higher. The larger 
facets will be those nearest in orientation to the mean interface plane, and the smaller facets 
may often be regarded as steps on the larger facets; by increasing the period, better and better 
rational approximations to an irrational plane may be obtained. For example, a first 
approximation to a particular interface might be produced by steps at repeated intervals of 
5, 4 and 4 lattice vectors along the rational Q interface, and successive approximations might 
then consist of the following repeated step patterns: ... 544 ... , ... 5444 ... , ... 5444544 ... , 
... 54445444544 ... , ... 544454454445444544 ... , etc. In the limit, when the period has become 
infinite, the interface is truly irrational, but the step pattern remains ordered. The interface 
is now an example of a one-dimensional quasi-crystal, since there is genuine periodicity 
parallel to 'It but the structure is quasi-crystallinen' 2l in the interface direction normal to 'It. 
Similarly, Sutton<"3l has shown that the "structural unit" model of irrational tilt boundaries 
with a rational tilt axis<"4l may be treated as a one-dimensional quasi-crystal in which the 
periodic combination of A and B structural units in a rational, high indices boundary becomes 
quasi-periodic in the limit. 

Note that if the plane of the larger facets were parallel to the true K, plane, the steps would 
be twinning dislocations in screw orientation. For a matching irrational plane, however, they 
are an essential element in the structure of the boundary, and have been called "intrinsic 
twinning dislocations".<44l If an irrational K 1 interface traverses a single crystal, there will be 
no force driving the steps in a particular direction when a stress is applied to the crystal unless 
a nucleating mechanism is available to supply fresh steps as required to maintain the 
irrationality of the interface plane. If this can be achieved, however, the steps will glide along 
the rational planes as the interface moves forward, and it is in this sense that they can also 
be regarded as twinning dislocations. This leads to the concept that steps on the rational facets 
could also assume edge or general orientations and local densities other than that specified 
by the lattice matching condition. The excess steps over the ideal model of the interface now 
constitute extrinsic twinning dislocations which will respond to an external stress in the same 
way as steps in rational K1 interfaces. 

Extrinsic twinning dislocations are effectively steps in the macroscopic irrational inter
face, so that their motion displaces this interface. The magnitude of the effective Burgers 
vector of such a twinning dislocation is given by the twinning shear multiplied by the height 
of the step in the irrational plane, i.e. by the interplanar spacing of the Q lattice planes 
resolved in the direction of the normal to the irrational K 1 plane. Hence the Burgers 
vector is 

(43) 

where u is any vector connecting lattice points on adjacent planes of type Q, and a is the 
spacing of the Q planes resolved in the direction of the unit normal m to the irrational 
interface. Note that the magnitude is irrational, but the vector is parallel to the rational 'It 
direction. This step in plane Q is the type II equivalent of an elementary twinning dislocation, 
but the interface structure on the two sides of the step will be identical only if a primitive 
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lattice vector w parallel to q1 traverses not more than two lattice K2 planes. In other cases, 
the equivalent of the zonal twinning dislocation must be defined by: 

(44) 

It might be considered that the intrinsic steps of the irrational interface would all have a height 
of qd rather than d, but this cannot be assumed without modelling the actual interface 
structure; it is conceivable, for example, that an alternating configuration at the Q facets is 
more favourable than a repeated configuration. 

An equivalent formal treatment of a faceted interface is to use the Frank-Bilby-Bollmann 
equation to calculate separately the formal dislocation content required to correct the misfit 
along each of the facets P and Q. This corresponds to - bT for an individual step facet P, 
but sums to zero over a sufficient number of facets if the relative lengths of Q and P 
perpendicular to q1 give the exact K1 interface. Various ambiguities in the dislocation 
descriptions of stepped and unstepped interfaces depend on how zero dislocation content is 
defined, and are discussed by Olson and Cohen,<1151 Olson,< 1161 Christian and Knowles0171 and 
Christian.0181 

4. NUCLEATION AND GROWTH OF DEFORMATION TWINS 

4.1. Homogeneous Nucleation 

It is usually assumed that separate consideration should be given to the formation of a 
small twin region and to its subsequent growth into a large twin. The reasons for this 
assumption are similar to those which lead to the conclusion that most first order phase 
transformations are divided into nucleation and growth stages, namely the spontaneous 
formation of a large twin is difficult to envisage, and the finite positive energy of the 
matrix-twin interface implies an energetic barrier to the formation of a very small volume of 
twinned crystal. The analogy with phase transformation may be taken further, inasmuch as 
twin nuclei may be supposed to form under the action of an applied stress in a region of 
near-perfect crystal (homogeneous nucleation) or, alternatively, may form only when a 
suitable defect configuration is present (heterogeneous nucleation). 

The possible influence of defects on twin nucleation was studied in some classic experiments 
of Bell and (R.W.) Cahn.<119·1201 They found that very carefully prepared and handled single 
crystals of h.c.p. metals may be stressed to much higher levels than those at which twins 
normally form in less perfect crystals, but that twins can be induced in a highly stressed crys
tal by pricking the surface with a pin. In later experiments on cadmium and zinc, Price( 121 - 1231 

used near perfect whisker and platelet specimens strained in situ whilst under observation 
in an electron microscope and found that the stresses to induce twinning were an order of 
magnitude higher than those usually measured on macroscopic specimens. The interpret
ation of these results was that twinning is normally initiated by some defect configuration, 
but that in highly perfect crystals which deform at much higher stresses, homogeneous 
nucleation of twins may occur. 

Homogeneous twinning under the action of stress alone implies a mechanical instability 
of the lattice, and occurs, in principle, when the applied shear stress on K1 resolved along 
q1 reaches a critical value, the so-called theoretical strength of the material. Recent 
developments in first principles calculations have made it possible to treat this problem within 
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the local density approximation to density functional theory, without any assumptions about 
interatomic force laws. Paxton et a/.0 24> considered in this way the lattice stability against 
twinning- and anti-twinning shear stresses for five b.c.c. transition metals and for f.c.c. lr, 
Cu and AI. They found, remarkably, that the critical shear stress for twinning is (0.12-0.l?)p. 
where p. [ = (c 11 - c12 + c44 )/3 for cubic crystals] is the appropriate elastic modulus for shear 
on K1 in the direction q1 • According to these calculations, the critical strain is also remarkably 
constant and is either equal to or slightly greater than the Frenkel value of one quarter of 
the twinning shear for all the metals except iridium and copper. The authors claim that these 
results have significant implications on, for example, the formulation of the Peierls-Nabarro 
model of a dislocation. 

The theoretical strength is an important material parameter in theories of deformation 
and fracture, but it is uncertain whether it is approached in practice, even in near perfect 
crystals. At such high stress levels, it is also difficult to model the way in which the insta
bility might develop; the quasi-static models of twinning dislocations are probably inapplica
ble, but it is difficult to envisage an instantaneous homogeneous deformation, rather than 
a discontinuity (a soliton wave?) which spreads outwards from some centre. This modifies 
the instability criterion, since either interfacial energies or gradient energy terms must be 
introduced. 

The classical theory of homogeneous nucleation avoids such difficulties by supposing that 
the free energy barrier to the formation of a small twinned region is overcome by thermal 
fluctuations. This theory, initially applied to twinning by Orowan,025> is considered next as 
a possible explanation for the experimental results on nearly perfect crystals, but it should 

be noted that there is no substantial experimental evidence to support a thermally-activated 
mechanism for twin nucleation. In particular, twins are often observed to form more readily 
as the temperature is decreased, even at temperatures approaching absolute zero. 

In classical nucleation theory,(20> the energy of a small embryonic twin which is assumed 
to be separated from the parent phase by a sharp interface is calculated by assuming that 
the embryonic region has a defined volume and surface area and that macroscopic parameters 
such as surface free energy or elastic stiffness are relevant. The obvious difficulties of this 
model when applied to a very small twin volume have been much discussed in the analogous 
case of phase transformation;(20> in many circumstances, the assumptions seem to be justified 
provided it is recognized that the parameters introduced will not necessarily have their bulk 
values. The calculation is simplest if the twin embryos are assumed to be oblate spheroids 
with minor axis (y) normal to K 1• A more general assumption is that the shape is an ellipsoid 
with three unequal axes, the two axes in the K1 plane being parallel to q1 and normal to P 
respectively. This more general assumption would be especially relevant when account is 
taken of elastic anisotropy, as in recent papers by Lee and Y oo0 26> and Y oo and Lee, 027> but 
it has not been seriously tackled, presumably because the calculations then become very 
difficult. The simpler assumption of circular symmetry within the habit plane seems 
sufficiently accurate for most purposes. 

The change in energy on forming an embryo of semi-axes R,R and y has a negative term 
representing the work ts per unit volume of embryo done by the shear stress across K1 

resolved in the qf direction, a positive term of magnitude (in the isotropic approximation) 
Ay / R representing the elastic energy per unit volume of the constrained twin, and a further 
positive term for the (non-elastic) energy of the twin interfaces. In this calculation, Orowan 
treated the interface energy as that of the matching K 1 planes plus that of the twinning 
dislocations which were assumed to have a uniform line tension, i.e. energy per unit length. 
Orowan assumed the constrained strain energy to be negligible on the assumption that the 
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matrix stresses do not exceed the yield stress. However, the energy for homogeneous 
nucleation, unaided by defects, is obtained by allowing the stress field of the twin to increase 
to whatever value is appropriate in the elastic approximation, up to the theoretical strength 
of the material. This is not unreasonable since there should be no dislocation sources in the 
small high-stressed volume around the tip of the nucleus. The strain energy may then be 
included by means of Eshelby's linear elastic calculation,<128l and the steps may be regarded 
as sections of a second interface with specific free energy u' different from the energy u of 
the K1 interface. The change in energy AG due to the formation of an embryo of volume 
v = 4nR 2y /3 in an infinite matrix may then be written<129l 

AG/v = --rs + 3u/2y + 3u'/R + Ay/R. (45) 

The size and shape of a critical nucleus are given by o AG foR = o AG joy = 0 and this defines 
the saddle point in AG. The shape of this nucleus is defined by the equations 

-rsR = 2Ay + 3u' 

uR = Ay2 + u'y 

which may be solved to give the critical thickness 

(46a) 

(46b) 

(47) 

where p = -uj-rs and q = u'/2A. (The minimization used by Orowan corresponds to A= 0, 
whereas some other treatments effectively have u' = 0. The equations also depend slightly 
on the assumed geometry of the nucleus; that used by Orowan introduces factors of 4/3 and 
3/4 into the second term on the right of eq. (45a) and the first term on the right of eq. (45b), 
respectively.) 

The factor A in isotropic approximation<128l is p.[n (2- v )/8(1 - v )]s2 ~ p.s 2 and for { 10I2} 
twinning in zinc, this is about 6 · 108 Jm-3. Low estimates of u and u' are 20 and 100 mJm-2, 
and with Price's measured value021-123l of the twinning stress for zinc of -r = 500 MPa, the 
driving force supplied by the applied stress is -rs = 7 · 107 Jm-3. The critical nucleus would 
thus have Yc ~ 0.63 nm (i.e. about ten {1012} lattice planes) and the corresponding values of 
Re and AGe are 15 nm and 75 eV, respectively. This is clearly much too large an energy 
for homogeneous nucleation by thermal fluctuations to be feasible, and Price's original 
claim that the Orowan theory gives a nucleation barrier of only 1 eV seems to have been 
erroneous. Variations in the assumptions by setting either u' or A equal to zero do not 
produce much improvement; the most favourable case is for A = 0, which corresponds to 
AGe~ 13 eV with the above assumptions, and an appreciably larger value with the effective 
value of u' = 500 mJm-2 used by Orowan. 

The use of anisotropic elasticity026·127l introduces two additional energy terms which are 
respectively an "inhomogeneity effect" arising from the difference in elastic constants of the 
twin and matrix which modifies the stress-free strain used in Eshelby's theory (the simple 
shear of the twinning mode) to an effective strain, and a second term which is usually 
described as an elastic interaction energy and is the additional work done by the applied stress 
because of the elastic inhomogeneity. In practice, because of the mirror plane or rotation axis 
of symmetry of the parent-twin relation, many elastic stiffnesses are identical in matrix and 
twin, and the elastic strain energy differs little from that calculated on the assumption that 
twin and matrix have identical elastic properties. 
JPMS 39/1·2-D 
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Lee and Y oo also discuss two separate shapes, namely the oblate spheroid with semi
axes of lengths y, R, R and the elliptic cylinder with semi-axes y, R, oo. In both cases, the 
energy is treated as a function of volume and aspect ratio y I R and for the elliptical cylinder, 
a shape bifurcation is obtained. The equilibrium aspect ratio is predicted to be unity (i.e. the 

I 

twin is a circular cylinder) below a certain linear dimension (defined as [cross-sectional areap:), 
whilst above this dimension the aspect ratio decreases rapidly. This is expected since with 
increasing size, the surface energy term is less important, whilst the strain energy tends to 
zero as the aspect ratio becomes very small. The strain energy per unit volume of the twin 
is also found to be smaller for the flattened cylindrical plate than for the oblate spheroidal 
plate. However, the relevance of this result to the estimation of the energy fluctuation needed 
to nucleate a twin is not clear, and the calculation of the free energy barrier in an appendix 
to the paper on tetragonal twins< 126l gives only the saddle point value of the free energy per 
unit length of the cylindrical twin. In order to assess the probability of homogeneous 
nucleation, the total free energy of formation of a twin embryo mut be calculated; this 
implies a minimization of the net change in free energy for a general ellipsoid shape with 
respect to all three semi-axes or (equivalently) to its volume and both aspect ratios. This seems 
to have been accepted in the results given by Lee and Y oo< 127) for h.c. p. twinning where an 
equation is given for the energy barrier of an oblate spheroid rather than a cylindrical twin. 
Lee and Yoo further suggest that the active twin mode is that for which this nucleation 
barrier is least, and they speculate that the observed transition from predominantly { 1122} 
twinning at low temperatures to {lOTI} twinning at higher temperatures in titanium and 
zirconium may be rationalized in terms of a temperature-dependent ratio of the twin 
boundary energies. 

The general conclusion after the earlier calculation was that homogeneous nucleation 
of twins is improbable unless there is a combination of very high stress and very low 
surface and strain energies, and this remains valid in the more sophisticated recent work. 
Although the strain energy may have been reduced in the thin platelets used in Price's 
experiments, it is unlikely that the surface energies can be substantially lower than the above 
estimates. The alternative possibility seems to be that the true stress concentration factor at 
the re-entrant nucleation sites was larger than that calculated, or that the platelets contained 
some undetected defects which aided nucleation. Bell and Cahn similarly interpreted their 
results by supposing that a high stress concentration was produced by local slip on two 
systems. It is now considered highly probable that twinning is in fact usually initiated by 
defects, the role of which may be either to produce the very high stresses required for 
homogeneous nucleation, or to form nuclei more directly by re-arrangements in their core 
structures. 

4.2. Growth by Homogeneous Nucleation of Twinning Dislocations 

The model, of an enclosed lenticular twin as a series of twinning dislocation loops parallel 
to a (rational) K1 plane implies that a small nucleus of this type could extend very rapidly 
in all directions contained within K1 simply by expansion of these glissile loops. The effect 
of this is to produce (in principle, at least) large flat areas of coherent K1 interface, and further 
thickening of the twin then requires a mechanism for the formation of new layers. This is 
a problem analogous to that encountered in the theory of the growth of a close-packed face 
of a perfect crystal from the vapour phase, which requires (in the absence of suitable 
topological defects) the repeated nucleation of disc-shaped islands forming two-dimensional 
nuclei of new layers surrounded by closed steps. In a similar manner, a possible mechanism 
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for the thickening of a twin in the direction normal to K1 is the thermally-activated formation 
of a closed loop of twinning dislocation which then spreads outwards under the influence of 
the applied stress. This is a nucleation problem since the tendency of the stress to expand the 
loop is opposed by the line tension of the twinning dislocation. 

With an isotropic linear elastic model, the energy needed to form a loop of radius R is 

(48) 

where ri is the core radius of the twinning dislocation and the two terms represent respectively 
the line tension (or strain energy) of the dislocation loop and the work done by the applied 
shear stress -r. The condition for the loop of critical size, aAW/aR = 0, then gives 

(49) 

and 

(50) 

The activation energy at fixed stress thus depends upon the square of the Burgers vector and 
the stress at fixed energy varies linearly with the Burgers vector. The rate at which new loops 
form is proportional to exp(- Wc/kT), and may represent reasonable growth rates if b is 
sufficiently small. Estimates show, for example, that if b is about one-tenth of the interatomic 
distance and -rIp, exceeds ""'8 · 1 o-4, the corresponding activation energy and critical radius 
are ""0.2eV and lOnm, respectively, thus giving quite a high nucleation rate at most 
temperatures. On the other hand, if the twinning dislocation has a Burgers vector greater than 
(say) one-third of an interatomic distance, as in cubic metals, the probability of spontaneous 
(thermally-assisted) formation of new layers is almost negligible. 

Twinning dislocations in face-centred tetragonal or orthorhombic structures, such as those 
found in indium-thallium or gold-cadmium alloys, have Burgers vectors with magnitudes in 
the range 0.006---0.04 nm. Birnbaum and Read<DO) showed that twin boundary motion by 
spontaneous nucleation is quite probable in such alloys, the required activation energy being 
comparable to the available thermal energy at stresses and temperatures corresponding to 
those at which the boundaries are observed to move. In these alloys, a single crystal of the 
high temperature cubic phase may be transformed martensitically to give a specimen 
consisting of a single set of parallel twins. The twins are extremely mobile under small stresses, 
and deform plastically up to a limiting strain entirely by movement of the twin boundaries. 
The low stress required to move the boundaries is undoubtedly associated with the small 
shear, whether or not twinning dislocations are nucleated spontaneously. It should be noted 
that the calculation of the activation energy for nucleation using eq. (48) neglects the core 
energy of the twinning dislocation, and this may not be justified when the elastic energy 
becomes small. The equation also does not include any term representing the misfit energy 
of the area enclosed by the loop of twinning dislocation; in other words, it is appropriate to 
the nucleation of a new step on the surface of an existing twin, but not to the creation of 
a monolayer twin in a region of perfect lattice. However, if the calculation is correct, it seems 
that there should be no difficulty in the normal growth of a twin which is only a few lattice 
spacings thick. 

The conclusion that thickening of deformation twins in cubic crystals by spontaneous 
nucleation of successive loops of twinning dislocation is not possible rests on the assumption 
that the interface region possesses the elastic properties of the matrix. Some authorsn 31 - 132l 
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have pointed out that this conclusion may be erroneous, and in particular, the effective shear 
modulus, p' may be appreciably lower than the modulus, p, for bulk material. Support 
for the view that the effective stress and activation energy required to nucleate a loop of 
twinning dislocation may be lower than the values given by the ordinary linear elastic model 
comes from the computer simulations of Yamaguchi and Vitek(94l and Bristowe and 
Crocker(93l which indicate that twinning dislocations have relatively wide cores and hence 
relatively small self energies. Yamaguchi and Vitek point out that the width of the core 
according to the Peierls-Nabarro model is proportional to the shear modulus and from the 
computed widths of twinning dislocations and lattice dislocations using various empirical 
interatomic potentials, they estimate the effective shear modulus p' to be a factor of 3-5 times 
smaller than the modulus of the matrix. Sumino(l 31 l estimated the stress needed for 
spontaneous twinning, i.e. virtual zero activation energy, as Jl 'b /2h, and Yamaguchi and 
Vitek point out that with their potentials this is ~O.Ol-0.02p. This is still rather a high stress 
for continuous growth of twins, but is lower than the corresponding estimate for formation 
of a twin nucleus from a screw dislocation which is ~0.03p for the same potentials. Thus 
growth by spontaneous nucleation of new layers is considered to be a possible mechanism, 
even in b.c.c. metals. 

4.3. Defect-Assisted Nucleation and Growth: General Principles 

Most models of defect-assisted nucleation are based on the dissociation of some dislocation 
configuration into a single- or multi-layered stacking fault which then serves as the twin 
nucleus. Many of these models are specific to the various crystal structures, but it is use
ful to recognize certain common features. The fault configuration is bounded by partial 
dislocations of the parent crystal which can also be considered as twinning dislocations, and 
these can extend the fault in its own plane very rapidly. Growth normal to the K1 plane may 
be envisaged either as an orderly process in which each layer is added successively to the twin, 
or as the random accumulation of embryonic twin faults. Orderly growth may occur by 
homogeneous nucleation of steps, as described in Section 4.2, or by the heterogeneous 
nucleation of successive steps at some extended defect configuration such as a grain bound
ary, but there are other possibilities, usually described as "pole mechanisms" and "ratchet" 
or "cross-slip" sources. 

In general, there are no crystallographic restrictions which prevent existing lattice 
dislocations from dissociating into any number of twinning dislocations together with a 
residual imperfect dislocation to conserve the total Burgers vector. However, the number of 
likely configurations for particular crystal structures is strictly limited and tends to be 
controlled by crystallographic degeneracies. Figure 10 shows some (crystallographically) 
possible dissociations of individual glide dislocations033l which depend upon relations between 
the slip plane and direction and the twinning plane and direction. In (a), a slip dislocation 
lying along the intersection of its slip plane (S) and a twinning plane (T) dissociates into a 
single twinning dislocation which moves off into T leaving a residual imperfect dislocation 
along the line of intersection of the two planes. Such a dissociation can occur in any crystal 
structure since a glissile dislocation can always, in principle, reorient itself in its slip plane 
until a sufficient length also lies in the plane T. Also, in some structures, sessile dislocations 
may lie in a twinning plane, or long jogs may form on a slip dislocation as the cumulative 
result of many intersections with other dislocations of a different Burgers vector. A special 
case of the simple dissociation occurs if the T and S planes coincide, as shown in Fig. I O(b ). 
The initial dislocation need not then be a straight line, and both the twinning and residual 
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(d) 

Fig. 10. Some degenerate cases of the dissociation of slip dislocations of Burgers vector b, lying on 
slip planes S into twinning or transformation dislocations of Burgers vector bT lying on twinning planes 
T and residual dislocations of Burgers vector bR. In (a) a straight segment of a slip dislocation in S 
has dissociated into a twinning dislocation in T and a residual dislocation along the line of intersection 
of SandT. In (b) the planes SandT coincide so that the dissociating slip dislocation and hence the 
residual dislocation may be curved. In (c) S and two twinning planes T1 and T2 intersect in a line so 
that the original slip dislocation can dissociate into twinning dislocations on both planes. In (d) a 
special case which is possible in b.c.c. crystals, a screw slip dislocation dissociates symmetrically into 
three twinning dislocations on planes T1, T2 and T3 with b, = tb, so that no residual dislocation is 
required. The symmetrical situation shown in (e) with b, b{., b~, bR all approximately coplanar and 
orthogonal to the dissociating slip dislocation may occur in crystalline mercury (after Christian and 

Crocker( 1331 ). 
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dislocations are then, in principle, glissile, since both must have Burgers vectors in the S/T 
plane. This case arises in f.c.c., diamond cubic and related structures, and also in b.c.c. 
structures when the slip plane is {112}, but not when it is {110}. 

A more restrictive dissociation is shown in Fig. 10(c); the initial dislocation must lie 
along the intersection of two twinning planes into each of which it emits a twinning partial, 
leaving a stair-rod residual along the line of intersection. If the initial dislocation is a glissile 
slip dislocation, the line of intersection must also be contained in the slip plane. The condi
tion is met by the basal slip plane and various pyramidal twinning planes of the h.c.p. 
structure,<134> and there is then an additional symmetry since the two twinning planes are 
crystallographically equivalent and symmetrically disposed about the slip plane, and the 
Burgers vectors of the slip and twinning dislocations are coplanar. 

The configuration shown in Fig. IO(d) is even more symmetrical; a slip dislocation 
which is a pure screw lies along the common line of interaction of three twinning planes, 
and can thus dissociate into twinning dislocations on each of these planes. This well
known case occurs in b.c.c. structures where the Burgers vector of each twinning dislo
cation is equal to one third of the Burgers vector of the total slip dislocation, so that 
there is no residual dislocation along the original line. Early calculations by Sleeswyk,035> 

however, indicated that the configuration shown in Fig. IO(d) is not stable, and the stable 
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structure has faults of equal length along two of the {II2} planes, with the third partial along 
the joining line. 

The symmetry relations discussed for Figs IO(c) and (d) naturally are found only in crystals 
of high symmetry, but Guyencourt and Crocker<44l pointed out that they also may exist in 
approximate form for crystals of lower symmetry with irrational twinning elements. In 
crystalline mercury, for example, two variants of the irrational K1 plane intersect in an 
irrational direction which lies approximately in the slip plane, and the corresponding slip 
and twinning directions are all coplanar and approximately normal to this direction.<44l This 
is shown schematically in Fig. IO(e) and suggests that dissociation of an edge slip dis
location into pairs of twinning dislocations on the two twin planes might be geometrically 
feasible. (The discrepancies which are ignored by such a description are all less than 2°.) 
A suitable rational approximation to the twinning plane suggests that each slip dislocation 
might dissociate into about II pairs of twinning dislocations, defined as discussed in 
Section 3.3. 

It is not possible to generalize about the physical probability of the dissociations shown 
as geometrically possible in Fig. IO, and atomistic rather than elastic calculations will often 
be required to assess the energy associated with a particular configuration. It is well known, 
for example, that the hypothetical dissociation of Fig. tO( d) in a b.c.c. metal is strictly to be 
regarded as a model of the core region of the lattice screw dislocation, rather than as the 
formation of genuine planar faults. 

The various dissociations of Fig. IO may all (geometrically) lead to faults of indefinite 
extent, but in order to produce twins, some means of growth normal to K1 must be postulated. 
As mentioned above, growth might occur by random accumulation of independently 
nucleated faults, but orderly growth must involve either repeated nucleation of successive 
layers, homogeneously or at some favourable defect configuration, or a pole or cross-slip 
"source" mechanism which allows a single twinning dislocation to move through successive 
K1 planes. 

The concept of the pole mechanism is due to Cottrell and Bilby036l and to Thompson 
and Millard<'OOJ who independently devised particular models for twinning in b.c.c. and 
h.c.p. structures respectively, whilst the general theory, including its extension to coherent 
martensitic transformation, was first given by Bilby.o37l Bilby and Christian038l illustrated 
the principle of the mechanism by considering a dislocation in a parent crystal with a 
Burgers vector bA, which crosses a K1 interface and continues into a twin crystal as a 
dislocation with Burgers vector b8 . They assumed that the two Burgers vectors are 
related by the simple shear of a deformation twin, i.e. b8 = SbA, and similarly that the 
slip plane normal (m8 )' = (mA)'S- 1• The components of the Burgers vectors, referred to 
unit cell based coordinate systems in the twin and parent respectively, are thus related 
by the correspondence matrix, as might also be expected if a fixed dislocation, without 
dissociating, is partly engulfed by a growing deformation twin. Note also that any two 
corresponding planes in parent and twin meet edge to edge in the interface, which is 
a necessary geometrical condition for the propagation of slip into the twin. However, 
to avoid possible confusion, it should be emphasised that, irrespective of the physical 
mechanism by which the configuration is attained, the Burgers vector of a parent dislo
cation bA which crosses a K1 interface need not be equal to SbA in the twin. Other poss
ible relations arising from the physical incorporation of slip dislocations into twirrs 
during plastic deformation are considered in Section 6.2. The assumption of correspond
ing vectors is made here because it is an essential condition for a successful pole 
mechanism. 
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The passage of the dislocation leaves a step in the interface of height h = bA.m = (bAYm; 
equal to the component of bA (or equivalently of b8 ) in the direction of the unit normal 
m to K1 • This step is a twinning dislocation, with a Burgers vector b-r = b8 - bA = 

(S- I)bA = (bA. m)s 1 and it runs between two (opposite) crossing points or from a single 
crossing point to the periphery of the interface. Thus, each crossing point is the junction of 
(at least) three dislocation lines, one in each crystal and one in the interface. Bilby called this 
configuration, in which 

(51) 

a "generating node". Since all the planes parallel to K1 are now threaded by a "pole" dislo
cation with a normal component of Burgers vector, the set of parallel planes has been changed 
into a continuous spiral ramp leading from parent to twin. If the glissile twinning dislocation 
in the plane of the interface now glides along this plane whilst the other elements remain fixed, 
it must rotate about the node or nodes, and for each complete revolution, the K1 interface, 
together with the node, is displaced into the matrix or the twin (depending on the sense of 
the rotation) through a distance equal to h = bA. m. Successive blocks of structure thus suffer 
the same vector displacement relative to each other, in order to give the macroscopic shear 
of the twinning relation, and any necessary shuffling presumably occurs spontaneously at the 
step. A dislocation which both enters and leaves a twin may do so at the same K1 interface 
or at the two K1 interfaces of a twin of finite thickness. Single nodes, giving a spiral step from 
single crossing points, and double nodes, giving closed terraces of twinning dislocation from 
opposite crossing points in one interface, can both be formed, as in the topologically similar 
models of dislocation-assisted crystal growth 039• 140> and Frank-Read source040• 141> operation. 
(Note especially the similarity to a "cone" source.037• 140>) 

The dislocation configuration required for this mechanism in compound or type I twins 
is quite specific; the pole dislocation must have a Burgers vector component normal to the 
interface which is equal to qd (for q odd) or !qd (for q even) where d is the spacing of the 
lattice K1 planes. Any dislocation with a Burgers vector from plane 0 to plane q or !q will 
satisfy this condition which arises, of course, in order that b-r, where necessary, shall be a 
zonal twinning dislocation and thus able to glide freely. The same condition ensures that if 
bA is a lattice vector of the matrix, b8 will be a lattice vector of the twin, and together with 
m8 it defines a geometrically feasible, atomic slip system, the plane and direction of which 
will, however, probably have relatively high indices so that actual slip on this system may 
be impossible. Clearly, dislocation glide across the interface becomes a virtual rather than a 
physical process if the dislocation in the twin is unable to glide, but if the configuration can 
be formed in some other way, the resistance to slip within the twin could ensure the stability 
of the node. However, in many low symmetry structures with several active twinning modes, 
suitable pole dislocations may not exist. 

It follows from this treatment that the interaction of independently formed dislocations 
and twins may produce a true generating node in the sense defined by Bilby and Christian<138> 

and Sleeswyk042> at each crossing point. In particular, four variables listed by Venables<143> 

are correctly disposed so that the applied stress favouring twinning continues to drive the 
twinning dislocation into the matrix, whereas an opposite stress reverses the motion so as to 
produce de-twinning. These variables are: 

(i) the screw sense of the pole dislocation, 
(ii) the type of stacking fault in the parent lattice which is trailed behind the glissile partial 

(i.e. twinning) dislocation, 
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(iii) the side of the fault on which the glissile partial is situated, and 
(iv) the direction in which the glissile partial moves under a fixed applied stress. 

It may readily be seen that if another pole dislocation has the opposite Burgers vector 
(i.e. the reverse screw sense), the last two variables must also be reversed, and the left-handed 
rotation of the dislocation -bT about the opposite pole produces the same twinning shear 
and displacement of the interface as the right-handed rotation of the original twinning 
dislocation + bT. 

The pole mechanism is usually invoked in combined nucleation and growth models of 
twinning which begin with the dissociation of a lattice dislocation in, for example, one of the 
ways shown in Fig. 10. One simple possibility is that a glissile partial dislocation trailing a 
monolayer stacking fault in the K1 plane encounters a suitable pole dislocation threading this 
plane. A pole source is then produced if the partial wraps itself around the pole. The two 
parts of the partial then form a dipole on adjacent K1 planes and between these two planes, 
the pole dislocation is converted (formally) into the dislocation b8 of eq. (51). If the two 
opposite segments of the original partial are able to glide past each other (a very doubtful 
assumption with a single plane separation) they can continue to spiral upwards and 
downwards respectively. This mechanism is feasible only in structures where the K1 plane is 
also a slip plane, and even then it is necessary to postulate some mechanism for producing 
isolated partials rather than extended whole dislocations. 

More elaborate discriptions suppose that an initial pole dislocation contains a superjog 
which dissociates in the K1 plane, emitting a twinning partial into K1 and leaving a sessile 
partial along the original superjog. With a correct configuration, this leads to a perfect pole 
in which the two ends of the twinning partial spiral upwards and downwards from the sessile 
partial, passing very close to it on the first turn, but never being blocked by it. Hence, a twin 
is formed by outwardly spreading shear on what is topologically a single helicoidal K1 surface 
wrapped around the pole dislocation. The sessile partial of the dissociation is the vector b8 

of eq. (51) referred to the parent structure, and within the twin, this vector b8 defines a perfect 
lattice dislocation. Now suppose that the same pole dislocation bA dissociates into a 
dislocation of Burgers vector b: = [SbA- 2bT] and a glissile partial -bT which glides away 
from the superjog in the opposite direction to produce an identical (intrinsic or twin-type) 
fault. The sessile partial b: is now given by: 

(52) 

and variables (iii) and (iv) above have been reversed. The dislocation - bT is still rotating 
about a pole bA in the matrix, but the vector b: is not a lattice vector of the twin since it 
differs from SbA (a lattice vector) by 2bT (not a lattice vector). Moreover, b: for this new 
dislocation has the wrong screw sense since this has not changed whilst the vector of the 
twinning dislocation has been reversed, so that after one revolution, the twinning dislo
cation does not advance along the pole but returns to the sessile partial. If it recombines and 
then dissociates, it can continue only along its original path again, thus increasing the 
displacement between the same two planes and producing a high energy fault instead of a 
twin. This configuration, first pointed out by Cottrell and Bilbyn36l in connection with a 
model for f.c.c. twinning, was called an "anti-generating node" by Bilby.<137l Twinning may, 
in principle, grow from such a node by utilising intimate cross-slip as first suggested by 
Venablesn44J for f.c.c. metals, and later described by Hirth and Lotheo41 l as a "ratchet" 
mechanism. 
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As mentioned above, there is a physical difficulty in the operation of a pure pole mech
anism if the original twin is either a monolayer fault or has only a few layers. A generating 
node appears on both the top and bottom surfaces of the original fault, and the resulting 
twinning dislocation segments rotate in opposite senses and after one revolution, these two 
segments must glide past each other at a separation equal to the thickness of the original 
fault. For monolayer faults or thin twins, this would require a very large (static) stress. Bilby 
estimated that, for cubic twins, a nucleus of about 50 atoms thick is required before the pole 
mechanism can begin to operate at experimentally observed twinning stresses. Actually, the 
separation of the partials after the first turn is so small that linear elastic theory may 
considerably overestimate the stress required; there is appreciable core overlap and atomistic 
calculations are required. However, it does appear quite probable that the pole mechanism 
of growth may only be effective after a rather thick nucleus has first formed in some other 
way. In the analogous problem of the f.c.c. to h.c.p. martensitic transformation in cobalt and 
its alloys, the situation is exactly equivalent, except that the partials meet at a separation of 
two atomic layers. Seeger045> suggested that the partials may acquire sufficient kinetic energy 
to overcome the very strong interaction and allow them to pass dynamically. This seems 
doubtful even for cobalt where the effective stress on the dislocations from the chemical 
driving force may be much larger than the externally imposed mechanical stress during a 
laboratory test. 

4.4. The Cottre/1-Bilby Theory of b.c.c. Twinning 

Cottrell and Bilby considered the continuous growth of a b.c.c. twin from an initial 
single layer fault formed from the dissociation of a perfect dislocation in the parent lattice. 
Their theory utilised the fact the the twinning dislocation of type k< Ill) is common to 
more than one crystallographically equivalent twin plane of type {112}. Figure 11 shows 
a length of perfect dislocation line, initially AOBC, having a Burgers vector ![Ill], and 
lying in the (112) plane, in which it cannot glide. The initial stacking fault is formed by 
dissociation of part of this line over the length OB, with nodes at 0 and B. The assumed 
dissociation 

HI 11]- HI 12] + w 1 I] 

Fig. II. The Cottrell-Bilby mechanism for twinning in a b.c.c. crystal. AO and BC represent lengths 
of lattice dislocations of Burgers vector HI II], OB is a sessile partial dislocation with Burgers vector 
HJ 12] and BDEFO is a glissile partial (or twinning) dislocation with Burgers vector HJ IT]. There is 

no dislocation line along OE (after Cottrell and Bilby< 136>). 

(53) 
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occurs by the separation of the partial dislocation W I 1] which is glissile in the ( 112) plane 
from the partial dislocation HI 12] which is sessile and remains along OB. The region between 
the two partial dislocations is a monolayer stacking fault on the (112) plane. 

Since BDEO is glissile, a length (EO) may lie in the [II 1] direction and thus become pure 
screw in character. The special properties of the b.c.c. structure arise from the crystallographic 
condition that the (121) and (21 I) twinning planes both intersect the (112) plane in the [II 1] 
direction, which is a twinning (q 1) direction for all three. EO can thus move into either (121) 
or (211), generating a new (twin type) stacking fault on these planes. Analysis shows that in 
order to form the correct (intrinsic) twin fault, it must move in such a direction that the new 
fault intersects the original fault on (112) at an acute angle. 

A macroscopic twin is now assumed to grow by repeated rotation of OF on whichever set 
of planes it entered; the figure illustrates this for the (121) planes. The problem of passing 
twinning dislocations does not arise, since the twin does not form on the plane of the original 
stacking fault, and it grows continuously from one side only; note particularly that there is 
no dislocation along the intersection EO of the two faults. However, it does encounter on 
each revolution the original fault on (112) which is converted into a different type of fault, 
almost certainly of higher energy, within the twin. If the node at 0 moves towards Bas OF 
rotates, as originally stated, the sweeping (twinning) dislocation climbs along the first stacking 
fault, and since OBis sessile the node is firmly anchored, thus satisfying one of the physical 
conditions. The dislocation OB has a Burgers vector 2dm, where m is the unit normal to (112) 
and dis the spacing; since {112} planes intersect at 60°, there is a component of magnitude 
d normal to either (121) or (21 1 ). 

As recognized in the original paper, the initial formation of a large monolayer fault on the 
(112) plane is improbable, and such faults are now believed to be mechanically unstable. Even 
if the fault is metastable, there is no first order change in elastic energy produced by the 
dissociation (52), so that the energy of the stacking fault represents a net increase in free 
energy which must be supplied by the external stress. Cottrell and Bilby estimated the shear 
stress needed to form the stacking fault as ar/b where ar is the stacking fault energy. This 
stress is reasonably small ( -108 Pa ~ O.OOlp if ar- 10 mJ m- 2 ) for f.c.c. or h.c.p. metals 
or alloys of low fault energy, but is rather large (- 0.02p for ar- 200 mJ m - 2, which might 
be an appropriate value) for b.c.c. metals. There is also an additional stress needed to bow 
out the twinning partial to its point of instability; this will depend on the length of OE. 
Stresses of magnitude (I0- 3-I0- 2 )p are often applied in order to twin b.c.c. metals at low 
temperatures, so that with a modest stress concentration, the mechanism seemed initially 
feasible. There is, in fact, now good evidence that b.c.c. twins may be nucleated by 
dissociation of a lattice screw dislocation, but not by the Cottrell-Bilby reaction. 

This combined nucleation and growth model cannot be applied to other structures, and, 
moreover, it now appears to be incorrect even for b.c.c. structures. The Cottrell-Bilby theory 
was criticized by Sleeswyk<'421 who pointed out that the dislocation in the twin is imperfect 
and the stacking fault is not a monolayer twin fault of the dissociation (53) but corresponds 
instead to a i <Ill) displacement in the anti-twinning direction (or equivalently to a ~<Ill) 
displacement in the twinning sense). Sleeswyk suggested this fault would be eliminated by 
nucleation of a dipole of i<I 11) partials. One of these partials would remain in the top 
interface whilst the other partial glides through and removes the stacking fault and annihilates 
the twinning dislocation. 

Hirth0461 first distinguished "pure" pole mechanisms from what were later called "ratchet" 
mechanisms, and Hirth and Lothe< 1411 pointed out that a slight modification of the 
Cottrell-Bilby model shows that it is actually a ratchet. The initial configuration is similar 
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to Fig. 11 but OE now represents a superjog in the dislocation, so that there is no stacking 
fault on (112) and the lines CBOE and CEDE are coincident and form a section of perfect 
dislocation CE. Dissociation of the superjog OE takes place according to eq. (52) and leads 
to the formation of a loop of twinning dislocation OFE which glides on (l21) or on (2ll), 
but after a single turn, the parts of this loop which rotate about 0 and £, respectively, are 
both blocked by the sessile partial left along 0 E, so that the configuration cannot act directly 
as a pole source. This is illustrated in Figs 12(a) and (b) which show the stacking sequence 
( ... ABCDEF ... in the perfect structure) of the (l21) planes before and after the dissociation 
of the superjog. If the glissile partial now winds about one or both ends of the superjog, it 
leaves along I to the right of the diagram and the two parts return along 2 and 3 to the left 
of the diagram. Since they are opposite in sign and very close together at this point, they 
cannot pass except under extremely high stresses. Thus they may form a lock of two parallel 
lines, or possibly mutually annihilate over some length (formally by nucleation of a jog of 
unit height), leaving a closed loop of fault containing a unit jog to travel outwards, and a 
residual part which is blocked by the sessile partial. In either event, the two ends of the 
twinning partial emerging from positions 2 and 3 of Fig. 12(b) run into the original sessile 
dislocation. In principle, they may recombine with this and immediately dissociate again, but 
a second revolution is not possible because the twinning partial would have to leave again 
along I, thus doubling the shear displacement of the first stacking fault and creating a high 
energy stacking fault and not a twin. However, if the returning parts of the twinning 
dislocation loop can recombine with the sessile HI II] dislocation left along OE to reform the 
original perfect dislocation, and if this now cross-slips through just one (l21) interplanar 
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Fig. 12. The jog version of the Cottrell~ Bilby pole mechanism. (a) The undissociated HTTT] dislocation, 
(b) the configuration after its dissociation into HTT2] and HIT!] dislocations, and (c) the situation after 
the first revolution of the HTII] twinning partial around the pole dislocation (after Hirth and 

Lothei14Ii). 
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spacing, it may then again dissociate and send out a second loop of twin stacking fault 
adjacent to the first loop (see Fig. l2(b )). Repetition of successive ratchet steps of dissociation, 
loop formation, recombination and cross-slip will then be (geometrically) possible. This 
mechanism requires that the dissociation (52) and its opposite recombination both take place 
spontaneously, and this seems rather improbable. 

The fact that the Bilby-Cottrell dissociation is not a true pole was rather obscured by the 
initial dissociation on the ( 112) plane of Fig. II. This has the result that after the first rotation 
of the twinning dislocation on (l2l) there is no sessile partial blocking its path. Hirth and 
Lothe's equivalent configuration without the stacking fault on (112) is actually more probable 
since it avoids the disadvantages of the high energy fault discussed by Sleeswyk and it also 
demonstrates that the dissociation of eq. (52) does not give a true pole mechanism. 

Hirth and Lothe also pointed out that a dissociation of the long jog into the opposite 
twinning dislocation and a larger sessile partial will give a true pole configuration. This arises 
because for shear on (l2l)[llT] the vector corresponding to [Ill] is [221] (i.e. [OOlh referred 
to the twin basis), not [112]. The reaction is 

HI II]= H22l] + HTTI]. (54) 

The glissile partial dislocation now rotates about the two poles in the opposite sense to that 
of Fig. l O(b) in order to preserve the same sense of the twinning shear. Referring to Fig. 12( c), 
part of it leaves to the left along path l and returns along path 3; it is not blocked but may 
leave again along 5, and continues spiralling upwards to generate a twin. Similarly the other 
part of the glissile partial leaves along l, returns along 2 and leaves again along 4 and 
continues spiralling in the opposite sense. 

This example shows that geometrically a pure pole source can be obtained from the 
dissociation of a long jog in a single dislocation; it is clear that eq. (54) is equivalent to 
eq. (51) whilst eq. (53) corresponds to (52). Sleeswyk gave another example of a possible pure 
generating node which has a pole dislocation with a < 100) type Burgers vector. However, 
it is not clear that the pure pole is a more probable growth mechanism than the ratchet. 
This is because the elastic energy increases in the dissociation (54) and must somehow 
be supplied in addition to the fault energy. An equivalent statement is that the stress field 
has to overcome the strong attraction between the glissile and sessile partials of eq. (54). 
Furthermore, although the twinning dislocation is not blocked in mechanism (54), the stress 
field must still overcome the strong interaction between the two ends of the twinning partial 
(the Bilby effect). This effect is obviously greatest after the first revolution and decreases 
with each succeeding revolution. These two effects together imply an exceptionally large 
local stress in addition to the stacking fault stress considered by Cottrell and Bilby. Thus 
this mechanism seems improbable physically. 

The Cottrell-Bilby theory is no longer considered an acceptable model for b.c.c. twinning, 
partly because of the energetic difficulties but also because much experimental evidence shows 
that dislocations which act as nuclei for twins always give variants in which the q1 direction 
is parallel to the Burgers vector of the dislocation, in contrast to eq. (53) and Fig. II. The 
paper, nevertheless, constitutes a landmark in the theory of twinning and some version of 
the pole mechanism remains potentially significant in the growth of a twin. 

4.5. Other Dislocation Models for b.c.c. Twinning 

The peculiar crystallographic feature of b.c.c. twinning is that the possible shear directions 
are crystallographically equivalent to the directions of the Burgers vectors of the stable lattice 
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dislocations. Models of nucleation which are based on the dissociation of lattice dislocations 
may thus be subdivided into those like Fig. IO(d) in which the actual ,, direction coincides 
with the Burgers vector of the nucleating dislocation, and those in which it does not. In the 
latter group are the other schematic dissociations of Fig. 10, including the Cottrell-Bilby 
mechanism, together with a number of proposals which are based on the assumption that 
twins are nucleated at intersecting slip bands. 

One version of such models simply supposes that the stress concentration produced by 
intersecting slip is sufficient to nucleate twins homogeneously, but others depend on specific 
dislocation reactions. Priestner and Leslie( 147l developed a model for the formation of a 
three-layer twin from slip on { 110} and {112} planes. They considered attractive interactions 
between glide dislocations on different slip planes to form <I 00) type dislocations which are 
believed to be sessile. The reaction 

Hill]+ HI II]= [001] (55) 

is thus assumed to lead to pile-ups of slip dislocations on the two slip planes behind the [00 I] 
lock until the stress concentration so produced forces the [001] dislocation to dissociate again. 
The [001] dislocation may lie in various crystallograhic directions (100), (111) or (311) 
depending on the two interacting slip planes. The case of interest for the nucleation of a single 
twin is when the slip planes of eq. (55) are (1I2) and (IOl), respectively, so that the [001] 
dislocation lies along [131]. Priestner and Leslie show that in this case a series of hypothetical 
dissociations enables the [IT 1] dislocation to escape and continue to glide along its original 
(IOl) slip plane whilst the other dislocation is split into three partials each having a Burgers 
vector of Hill]. These partials are on successive (1 I2) planes, so as they move away from 
the original lock, they create a three-layer fault, i.e. a thin twin. The shear of the original slip 
dislocation on (1 I2) is thus converted into the shear of this twin nucleus. Note that there is 
no shear discontinuity at the site of the original lock which must formally be represented by 
a dislocation dipole, or rather by two twinning dislocations and one complementary 
dislocation (see Section 3.2). The calculations indicate that rather a small stress concentration 
which multiples the applied stress by --40 is sufficient to dissociate the [001] dislocation in 
this way. 

Priestner and Leslie also considered the breakdown of a [001] barrier formed at the 
intersection of two {112} slip planes or two { 110} slip planes. In the former case, they predict 
that it is possible to form twin nuclei on each slip plane at a stress multiplication factor of 
"' 15 whilst in the latter case, pairs of slip dislocations escape from the lock when this factor 
exceeds "'135. Even this relatively high barrier represents only about 12 dislocations in each 
pile-up. 

This model for twin formation effectively uses the stress concentration of intersecting slip 
to force the dissociation of a lattice dislocation of mixed type into three twinning partials on 
successive slip planes. It does not, however, provide any obvious method for further 
thickening of this fault, since dissociation of a second lock formed from succeeding 
dislocations on the two planes would only lead to a different (high energy, or "anti-twinning") 
fault on the same three planes. In contrast to f.c.c. metals and alloys, there is, in fact, little 
experimental evidence to support the hypothesis that slip on more than one system is 
necessary to initiate twinning in b.c.c. metals. Small double slip bands have been observed 
in association with shock-formed twins in silicon-iron. However, such bands have not been 
found to accompany other b.c.c. shock twins and it is quite difficult to determine experimen
tally whether the slip bands were formed before or after the twin. Thus it seems quite possible 
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that the observed slip bands did not nucleate the twin but rather formed to accommodate 
the local high stress field of the constrained twin. 

An early proposal by Sleeswyk(135l was that since an unstressed ~< Ill) screw dislocation 
has three-fold symmetry, it may be regarded as having a three-dimensional core with a k< Ill ) 
partial on each of the intersecting { 112} planes. Under stress, however, this configuration will 
be unstable, and the partials could rearrange to form a three layer twin on the most highly 
stressed of the { 112} planes. A very similar suggestion was made by Ogawa048l who considered 
that edge dislocations might spread the total Burgers vector on to three successive planes, 
and thus give a three layer fault. Such speculations appear to be consistent with the early 
y-surface calculations of Vitek(90l which indicated that very thin "twins" (strictly four layer 
faults since the interfaces were of the "isosceles" type, see Fig. 6b) may be mechanically stable. 
These theories thus by-pass the rather elaborate interactions considered by Priestner and 
Leslie and simply assume that rearrangements of single dislocations (albeit of special types, 
most probably screws) give directly the same end result. 

(c) 
o oo2 

d 

Fig. 13. Micrographs illustrating the development of faulted structures in a Mo- 35at%Re alloy 
specimen deformed in tension at 77 K. The plane of the micrographs (a, b, c and d) are -(Ill), 
-(11 3), -(IOO) and -(I ll), respectively. Dotted line refers to the projection of the [Ill) vector on 

to the (I I I) plane. The markers represent I 11m (after Mahajan(l50l ). 
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Fig. 14. Micrographs illustrating the formation of faulted structures in a Mo-35at%Re alloy specimen 
deformed in tension at 77 K. The planes of the micrographs (a, b, c and d) are -(001), -(111), -(011) 

and -(115), respectively. The marker represents I pm (after Mahajan(l 50l). 
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Interest in the core structure of the b.c.c. screw dislocation has been stimulated by the 
important role assigned to such dislocations in low temperature deformation behaviour(l 18•149l 

and many computer simulations of the structure and its change when subjected to shear 
and/or dilatational stresses have been made. These calculations show that the core structure 
is quite complex and is sensitive to the assumed (two-body) interatomic potential and to both 
shear and non-shear components of the stress tensor. In certain circumstances, the application 
of stress leads to the formation of a four-layer fault, i.e. an apparent twin embryo, rather 
than to the movement of the dislocation as a whole. Thus, the simplest model assumes that 
lengths of screw dislocation, either pre-existing or left behind by previous microslip, are 
immobile below a certain temperature/strain rate combination, but dissociate by the Sleewyk 
reaction to give a four layer fault with a mobile edge. 

Experimental evidence which supports this model was obtained by Mahajan(l 05•150l in a 
detailed electron microscopic examination of dislocation and twin configurations in deformed 
molybdenum-rhenium alloys. Figures 13 and 14 show examples of the structures observed 
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in foils from specimens deformed at 77 K in tension. Diffraction contrast experiments led to 
the following conclusions: 

(1) The dotted line in Fig. 13(a) shows the projections of the Burgers vector of the 
dislocations in the microslip bands, so that the dislocations visible in these bands are 
in screw orientation. 

(2) Faults are formed only from dislocations in screw orientation (see F7 in Fig. l3(a)). 
(3) The fault vectors are parallel to the Burgers vector of the dislocations. 
(4) Various faults are located at different levels within the slip bands. 
(5) Clear faults (e.g. F8, F9 in Fig. 13) are observed. 
(6) The sides of the faults are parallel to the projection of the Burgers vector. 

The fault Fl9 of Fig. 14 terminates within the foil and is associated with faults Fl7 and 
Fl8 and dislocations 012 and 013. Mahajan showed that Fl7, Fl8 and Fl9 are all 
twins, and that the right hand interface of Fig. 14 is bounded by twinning partials of the 
same sign. 

These results clearly support the view that twins originate from screw type lattice 
dislocations, and Mahajan extended the Sleeswyk (or Vitek) model by suggesting that the 
faults formed by dissociation thicken by chance encounters with one another as the faults 
extend in the {112} slip plane. In the original model, the three layer faults formed by 
dissociation are bounded on one side by three twinning dislocations on adjacent { 112} planes, 
and on the other side effectively by two such dislocations and one complementary twin
ning dislocation to give zero net Burgers vector. When two such faults coalesce, a four, five 
or six layer fault may result, depending on the relative displacements of the centre plane of 
the fault. Although this seems to require a high density of dislocations to produce a 
macroscopic twin, Mahajan suggested that this "slip band conversion" might obviate the 
need for a pole type mechanism of thickening, especially if the screw dislocations are able 
to multiply by cross slip over short distances under the combined applied and internal 
stress fields. In support of this suggestion of intimate cross-slip was the observation that slip 
dislocations were associated with extremely small prismatic loops of the same Burgers 
vector, which could have formed from jogs produced by cross-slip. Also there were no 
indications of slip activity on any other system. Note, however, that cross-slip multiplication 
implies that the screws are not completely immobile, so that the dissociation into twinning 
dislocations has to depend either on some local pinning or on differential mobilities of the 
lattice and twinning dislocations. Mahajan's original description is also based on the 
assumption that each three layer fault will be of the type described above, but if cross-slip 
multiplication takes place, it is clear that closed planar faults bounded entirely by twinning 
dislocations may grow outwards. 

It is implicit in the above model that microslip must precede the twin nucleation and must 
continue whilst the twin grows. Whilst the atomistic calculations provide some support for 
the assumption that the lattice screw dislocations may only be mobile when dissociated, it 
is difficult to understand how cross-slip multiplication could then occur. The rate of 
thickening expected from the model is also dependent on the rate of growth of the microslip 
band normal to the slip plane. 

The sudden load drops which characterize deformation twinning at low temperatures in 
b.c.c. materials may be due to interactions between embryonic twins. Twins propagating in 
opposite directions within the nucleation region may impede each other's motion because of 
the attractive elastic interaction. As a result, continued deformation would require increased 
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stress. When the twins by-pass each other, the required stress would decrease again, leading 
to load drops which would continue so long as the embryonic twins were traversing the 
nucleation regions. However, once they propagate into undeformed regions of crystal, the 
probability of this "stick and slip" motion will be small, and load drops will no longer be 
observed. This assumes that twins nucleate during the early stages of the deformation; if the 
nucleation continues at moderately large strains, the load drops could persist over much of 
the stress vs strain curve. 

Some evidence to support the coalescence theory is provided by experiments<151 l on twins 
in niobium single crystals which had been prevented from growing to their natural lengths 
by a mechanical stop during the load drop. The main twin was composed of several smaller 
twins and apparently propagated by several discrete tips ahead of the main body. Additional 
microscopic evidence that small twins form from slip dislocations and then coalesce was 
more recently obtained from a spinodally decomposed Fe-Cr-Co alloy.<152l After room 
temperature deformation, interspersed slip dislocations and microtwins were visible in 
transmission electron micrographs, with the twinning direction parallel to the Burgers vector 
of the dislocations and the twins aligned along the projection of the fault vector. Recent 
measurements of the density of micro twins in an Fe-Ti-C alloy which was charged with 
hydrogen whilst being deformed at ambient temperature show both an increase in density and 
coalescence of microtwins as the strain increases.053l 

Coalescence theories of twin growth imply that the macroscopic twins may be highly 
faulted and the mixture of twinning and slip may lead to a measured shape shear smaller or 
greater than the theoretical twinning shear of the appropriate mode. Although it is generally 
assumed that twins do form with the theoretical shear, there have been few measurements 
reported since the work of Paxton<154l and Blewitt et af.<BJ and careful measurements of the 
shear magnitude with modern techniques might now be useful. 

4.6. Twinning in fc.c. Structures 

Cottrell and Bilby showed that their theory when applied to an analogous dissociation in 
a f.c.c. structure would produce only a monolayer of stacking fault, and at the time their paper 
was written this was in agreement with the lack of conclusive evidence for the formation of 
deformation twins in f.c.c. materials. Later, it was found that such twins form rather readily 
in metals and alloys of sufficiently low stacking fault energy, and Venables044l suggested a 
modified and ingenious mechanism to allow continuous growth from a single stacking fault. 
Stacking fault models seem physically more realistic for f.c.c. structures since wide faults are 
formed in many alloys, whereas the faults postulated for b.c.c. structures are probably 
unstable. 

Using the notation of the Thompson tetrahedron, consider the dislocation shown in 
Fig. 15 with a Burgers vector Ae lying in plane b except for a long jog N 1 N 2 lying in 
plane a. Let the part of the dislocation in a now dissociate into a Shockley and a Frank 
partial 

Ae = Aac +ace. (56) 

Under the action of a stress, the glissile Shockley partial ace moves away from the sessile 
Frank partial Aac on the plane a, leaving an intrinsic fault (Fig. l5(b)) and after attaining the 
unstable semicircular configuration it winds rapidly around N 1 and N2 to reach the position 
shown in Fig. l5(c). In this configuration, two segments of the ace dislocation delineating the 

JPMS 39{1·2-E 
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Fig. 15. Prismatic glide mechanism for f.c.c. twinning (after Venables044>). 

fault meet along RS at a separation of only one interplanar distance. These two parts of IXC 
are opposites since their line directions, originally parallel, are now antiparallel, and a very 
large stress would be required to force them past each other. It is important to note that the 
right hand element of the Shockley partial has moved downwards in wrapping itself around 
the pole dislocation, so that it is the lower dislocation of the dipole along RS. This element 
has a Burgers vector of -IXC when the positive line direction looks outwards from N2 , 

whilst the upper element of the dipole, looking outward from N 1, has a Burgers vector 
of +IXC. 

Venables assumed that the end element of the partial IX C recombines with the sessile partial 
AIX along the length RN2 and the reformed dislocation with Burgers vector AC then glides 
to the next plane rx and repeats the dissociation. When the second layer of fault expands, two 
opposite segments of its twinning partial will again meet on successive planes along RS, but 
each will be displaced by one plane from the initial pair. One of these segments (on the central 
plane) will annihilate the twinning partial left there by the expansion of the first faulted layer, 
thus joining the two layers into a continuous fault, and the final configuration (Fig. 15(e)) 
is now a double helical layer of fault terminated by twinning partials SRN1 and SRN2 at a 
separation of two atomic layers. The recombination and glide is represented in the figure as 
the operation of a dislocation source T2 and an equivalent source operates at the node N 1 • 

As shown in the figure, the cross-slip could occur formally by the formation of a unit jog 
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which moves along the recombined dislocation from N2 to R, but since the length of this 
"cross-slip" is appreciably less than an interatomic distance, the exact mechanism will depend 
on the detailed atomic structure of the dislocation core. Repetition of these operations will 
lead to a twin limited by a helical twinning dislocation with opposing segments parallel to 
RS on the top and bottom surfaces. This situation again arises because of the wrong-hand
edness of the dislocation AC in relation to the sign and direction of motion of the twinning 
dislocation; a cross-section of the superjog is like Fig. 13(b) but with three-fold stacking of 
{Ill} f.c.c. planes replacing the six-fold stacking of {I 12} b.c.c. planes. 

Venables pointed out that when the two partials attain a critical separation, they may pass 
one another under the action of the static stress field, and the twin can thicken further by 
the pole mechanism alone (see Fig. I 5(f) ). Basinski (private communication) has suggested 
the following simple argument to explain this transition. Suppose a single atomic jog is 
formed at N2 and travels all the way to N 1• If the original superjog was on plane 0, and 
the new superjog is on plane I, the two dipole partials will, in principle, become attached 
(i.e. form triple nodes) at the top [ +~C] and bottom [ -aC] of the jog. (Once again, this 
treatment is presented to demonstrate the correct geometry; it is, of course, physically 
nonsensical to imagine actual nodes within the interplanar length of the jog.) When the jog 
reaches N 1, the complete superjog will have reformed one plane higher, and the (infinitesimal) 
length of pole dislocation between the plane of the superjog and the next K1 plane beneath 
it will (in principle) have a Burgers vector of t<221). This vector is a (OOl)T vector when 
referred to twin coordinates and is the vector corresponding to the ~<I 10) type Burgers 
vector of the pole dislocation. In the general case, the ratchet mechanism leads to a pole 
dislocation between the two partials with a correct Burgers vector of type b8 , even though 
the initial dissociation produced b:. 

The final configuration is identical with that obtained when a partial dislocation in a 
stress field favouring twin formation glides on a K1 plane one interplanar distance below 
the superjog until it encounters the pole dislocation, about which it wraps itself. Apart 
from the superjog, there is thus no clear distinction between single fault pole sources 
formed from the dissociation of dilocations with Burgers vectors either in or out of the K1 

planes. 
Despite the initial formation of an antigenerating node, a single Venables cycle has formed 

from it a true generating node. Further cycles of dissociation, rotation, recombination, jog 
nucleation and displacement will steadily increase the length of t<22l) dislocation, i.e. the 
thickness of the embryonic twin, until the partials can pass, and growth by the ordinary pole 
mechanism can begin. In the more general case described by Venables, jogs form at both N, 
and N2 and the twin grows both upwards and downwards. The growth transition might be 
prevented if the dissociation of eq. (56) is spontaneous. The ratchet mechanism avoids the 
difficulties of the passing of the closely spaced partials and might be regarded as a plane by 
plane conversion of the antigenerating node into a generating node of finite height. The same 
description applies to Hirth's "ratchet" version of the Cottrell-Bilby mechanism and 
generally to dissociations of the form of eq. (52) which are eventually converted into poles 
of type (51). 

The above discussion verifies Venables<1431 claim, contrary to an objection by Sleeswyk,< 1421 

that the pole dislocation in the twinned region is a perfect lattice dislocation. Venables< 1431 also 
pointed out that if only one generating node (say N2 ) operates, a twin in the form of a 
plano-convex lens, (see Fig. I 6(a)) may be formed. Another rather similar configuration 
results if both parts of the original dislocation which are not in the plane a lie on the same 
side of a: (Fig. 16(b) ); once again, the twin is plano-convex. Some limited experimental 
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aC 

Fig. 16. Prismatic glide sources where the twinning dislocation remains at the matrix-twin interface. 
(a) Conventional prismatic source. (b) Source from the end of a dipole which remains on one side of 

the twin (after Venables043l). 

support for these later models comes from the electron microscope work of Steeds and 
Hazzledine. 055l 

In an early discussion of Venables theory, Hirth046l proposed an alternative dissociation 
to give a pure pole mechanism. However, Hirth's pole is not related to Venables' pole in the 
way that eqs. (51) and (52) are related, but involves dissociation of a different ~(110) 
dislocation AB which has a Burgers vector at ~ 54° to the anti-twinning direction, whereas 
that of AC is at ~ 73° to the twinning direction. Hirth's dissociation: 

AB = AafBC + Ca, (57) 

gives the opposite twinning dislocation Ca and a high energy sessile dislocation Aa/BC 
which is of type ~(411). Hirth also pointed out that with materials of low fault energy 
which are likely to twin, the Frank partial of eq. (56) and the high energy partial of eq. (57) 
would probably themselves be dissociated, giving stair rod dislocations in extended jog 
configurations. 

Another geometrically possible pure pole may be obtained by dissociating the lattice 
dislocation of eq. (56) in the manner of (51) rather than (52). Suppose that plane a is a (Ill) 
plane and the aC direction [112). Eq. (56) is then: 

![110] =Hill]+ HI12], (56a) 
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and the corresponding pure pole from eq. (51) is: 

![I 10] = ~[22I]- i[II2]. (58) 

Similarly, eq. (57) which corresponds to: 

![Oil]= Hl41]- i[I 12], (57 a) 

has a ratchet version: 

![Oil]= i[I25] + ~[112]. (59) 

The sessile products b8 with Burgers vectors !(221] and i(l41] have lattice Burgers vectors 
[OOlh and HtOlh in the twin basis whereas the products b~ with vectors t(lll] and i[I25] 
are non-repeat vectors t(lllh and H52lh referred to the twin lattice. All these dissociations 
are energetically unfavourable and the elastic part of the energy varies in the order 
(59)> (57)> (58)> (56). The dissociations will thus take place only if there are internal stress 
concentrations arising from pile-ups, intersecting slip or twin bands, or other agencies. Hirth 
estimated that the stress to nucleate a twin via the dissociation of eq. (57) is about twice that 
of eq. (56), but suggested that this may be compensated by the easier growth mechanism when 
no ratchet is involved. 

A notable feature of most pole and ratchet mechanisms is that the partial dislocation 
which generates the twin is formed from a dislocation with a Burgers vector which is not in 
the twin plane. This is described by Venables as a prismatic source. The special configuration 
required might be produced if AC is a slip dislocation in plane b which either has a straight 
length along CD or cross-slips into d and then lies along BC, or if jogs along BC are prod
uced by dislocation intersections. Other theories which are based on prismatic sources include 
those of Cohen and Weertman(l 56l and Fujita and Mori,<157l both of which utilize the Cottrell 
and Bilby dissociation into Shockley and Frank partials but do not assume a pole mechanism. 
In contrast to this prismatic source are various theories in which the dislocation r:xC is 
produced from dislocations with Burgers vectors BC or DC which lie in r:x, and these may 
be described as glide sources. Finally, there are theories which depend upon interactions of 
glide dislocations of two different systems, primary and coplanar<158l or primary and 
cross-slip. <159l 

Most of the early dislocation theories for the production of f.c.c. twins from glide sources 
depended on the formation of Lomer-Cottrelllocks.<9•10· 160> In principle this is not necessary 
since an extended dislocation lying in its slip plane with its ends pinned may be separated 
into component partials by the action of an external stress. This will happen if the first partial 
is able to bow out under the applied stress, as in a Frank-Read source, whilst the back partial 
is unable to follow it either because of its line tension or because it has a lower intrinsic 
mobility. The latter assumption is used in a recent theory of twinning in semiconducting 
materials, described in the next section. In f.c.c. metals and alloys, the intrinsic mobilities of 
both partials are large, and Venables pointed out that the stress-induced separation of these 
partials should favour twinning in tensile tests on single crystals when the stress axis is near 
(100), and this is contrary to observation. The dissociation of other glide dislocations, 
which would give approximately the observed dependence of twinning tendency on orien
tation of the stress axis, is possibly only with improbably large stresses and small source 
lengths. 

The theories mentioned above attempt to overcome difficulties of this kind by utilizing 
Lomer-Cottrell barriers to anchor one of the partial dislocations. However, detailed 
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examination°44•161 l indicates that it is impossible to devise a source of this type which will 
produce the correct twinning partials unless a high energy stair rod dislocation of type aA / B/3 
is included, and this should have little strength. 

Consider now the other models which assume the Cottrell-Bilby dissociation (55). Cohen 
and Weertman(l 56l suggested simply that glide dislocations in a blocked pile-up could 
dissociate into Frank and Shockley partials, and that glide of the Shockley partials on the 
appropriate { 111} planes would then give many intrinsic faults which could overlap to 
produce twins. In addition to the energetically unfavourable dissociation, this theory suffers 
from the disadvantage of all casual encounter theories that it is difficult to produce a twin 
which is highly perfect and has the theoretical shear. A later, rather similar model developed 
by Fujita and Mori<157•162-' 64l is described as "stair-rod cross slip" and assumes that the 
cross-slipping Shockleys do so in ordered sequence in order to produce a near-perfect twin. 
A slip dislocation in (say) the primary slip plane b is assumed to be held up by an obstacle 
along direction DC at 60° to its Burgers vector AC. A Shockley partial aC may cross slip 
to produce a wide stacking fault on the conjugate plane a, leaving a Frank partial along DC. 
If the stacking fault energy is sufficiently low, the Frank partial will be further dissociated 
into a Shockley partial on the plane b and a stair rod dislocation along the intersection of 
the two faults. The Shockley partial on plane a leaves a wide stacking fault but is not assumed 
to wrap around the remaining parts of the original dislocation (as in the Venables model) 
but simply to extend away from the stair rod (or Frank) dislocation. Successive slip 
dislocations are then assumed to pile-up behind the barrier and to cross-slip in the same way 
on to successive conjugate planes, thus forming a thin twin. Twins may form by the same 
mechanism on the primary plane if b is the conjugate plane. 

There is one major difficulty with this model, namely that each glide dislocation must 
cross-slip only when it has been forced into the next atomic plane, at a distance of a/..}3 from 
the Frank partial left by the preceding dislocation. The stress required to achieve this close 
approach is clearly extremely high, but elastic estimates are unreliable and atomistic 
calculations are required to give a realistic value. The situation is even worse if the Frank 
partial is dissociated into a Shockley partial on b and a stair-rod at the a-b intersection. This 
suggests that especially in materials of low fault energy, stair-rod cross slip can give only well 
separated single faults, as in the Cohen-Weertman model. As already emphasized, the energy 
required for the dissociation (52) may prevent it from occurring in practice. 

Later theories of deformation twinning in f.c.c. materials, including that of Fujita and 
Mori, are based on the experimental result that twinning in f.c.c. does not begin until slip 
is activated on at least two systems. The simplest description is that of Mahajan and Chin<158l 

who considered a reaction between dislocations of the primary system with Burgers vectors 
BC and of the co-planar system with vectors DC to form three Shockley partials 

BC+DC=3~C (60) 

which are then rearranged on successive planes to form a three-layer fault. A small twin is 
obtained when embryonic three-layer twins of this kind at different heights in a slip band grow 
together, an approach very similar to that of Mahajan for b.c.c. crystals. 

Although according to the Frank b2 rule, the overall reaction (60) is energetically 
favourable, the interaction of the two !(110) lattice dislocations may require an initial 
increase of energy. Moreover, when the glide dislocations are initially dissociated, an 
interchange of positions between the leading and the lagging Shockley partials is necessary, 
as shown schematically in Fig. 17. Suppose two dislocations, with Burgers vectors DC and 
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BC, each dissociated into Shockley partials, glide in plane a. The reaction (60) is opposed 
by the mutual repulsion of ~c and D~, and calculations(l 98l indicate that it could only occur 
with a very high stress concentration. Mahajan<165l later proposed that at a constriction, DC 
dissociates so that ~c lags behind D~; the high energy faults implied by this reversal 
may be avoided if the further dissociations ~c = B~ + D~ and D~ = ~c +~Bare assumed 
(see Fig. l7(b)). The partials B~ and ~B annihilate each other, leading to the formation 
of a fault-pair, as shown schematically in Fig. l7(c). Gallagher< 166·167l and Mahajan(l 65l 

found experimental evidence for the formation of such fault pairs in copper and silver 
alloys. 

It is not obvious how this fault pair converts into the three-layer twin required by eq. (60). 
Mahajan suggests that interaction between different fault pairs could lead to the nucle
ation of a Shockley loop with Burgers vector ~c on the adjacent plane. However, if 
spontaneous loop formation is possible, growth might begin from a monolayer fault and 
continue indefinitely without the need for the reaction (60) or the random association of 
faults. 
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More complex reactions involving slip activity on the cross-slip plane have been sug
gested by Narita and Takamura.<168) Their model requires the reaction of a slip dislocation 
BC with a Lomer dislocation DA lying along the intersection of the primary and cross 
slip planes to give 

BC + DA = 2ttC + ttA. (61) 

The Lomer dislocation DA must be produced by reaction between dislocations of the cross 
slip system with Burgers vector CA and the coplanar system with Burgers vector DC, and 
the theory has been criticized because such Lomer dislocations are seldom observed. 
However, the authors maintain that there is evidence of slip activity on the cross-slip plane, 
and that this means that the Lomer dislocations must form, even if not observed in lightly 
deformed material. This model was originally developed from a hypothesis that deformation 
twinning in f.c.c. materials may be viewed as a stress-relief process, complementary to 
cross-slip, and it is claimed to agree well with the experimental results. 

Attempts to find experimental evidence which will differentiate among the various 
models are generally based either on electron microscopic evidence for the particular reactions 
which have been postulated or on observed variation of twinning behaviour with external 
variables such as temperature, strain rate, and (with single crystal specimens) the sign and 
orientation of the stress axis. The microscopic technique provides more direct evidence, but 
suffers from the disadvantage that the foils examined may not represent bulk behaviour. 
On the other hand, the more macroscopic observations often permit several alternative 
explanations. 

Figure 18 shows a tapering (Ill) twin F 1 with faults or dislocations F2- F5 ahead of it. 
Contrast experiments show that F 1 is bounded by two sets of partial dislocations, I with 
Burgers vector HJI2] and II with Burgers vector HJ21]. The more numerous and evenly 
spaced set I is believed to represent the twinning dislocations and to be in screw orientation, 
whilst set II may be formed to accommodate internal stresses (see below). The contrast 
behaviour of F2 , F4 and F5 is consistent with the assignation of an R [112] fault vector to these 
faults. Dislocations Land M (Fig. 18) have Burgers vectors ~ [lOT] and HOI I] but the contrast 

Fig. 18. Micrograph illustrating the general features of faulting and slip observed in a Co- 9.5wt% Fe 
alloy deformed at 77 K. The plane of the micrograph is ~(00 1) (after Mahajan and Chin(l58l ) . 
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of dislocation N is complex and Mahajan and Chin concluded that its effective Burgers vector 
is ![112], and that it consists of three closely spaced W 12] dislocations. In this figure, CD 
and GH represent projections of the [lOT] and [01 I] vectors on to the (001) plane. Comparing 
these projections with those of various dislocations in Figs 18 and 19, it is inferred that the 
portions of dislocations L and M which react to form F3 are in screw orientation, whereas 
the majority of dislocations M are non-screw in character. Mahajan and Chin identified the 
crystallography of Figs 18 and 19 as evidence that the twin F 1 formed by a slip-twin 
conversion according to a reaction which is a variant of eq. (60), and they argued that it could 
not be explained by eq. (61). There is, however, no direct evidence that dislocation Nor any 
of the faults has been formed by eq. (60). Similar indirect support for the Mahajan-Chin 
model comes from observations by Robertson< 169> on a terminating twin and accompanying 
dislocations in nickel. The Burgers vectors of the twinning partials and of the whole 
dislocations were consistent with eq. (60). 

In support of the stair-rod cross-slip model, Mori and Fujita<163> showed wide, overlapping 
stacking faults on the conjugate plane on which twinning was observed; there is, however, 
no direct evidence that the faults have formed by cross-slip from the primary plane. A later 
attempt to find such evidence was made in an in situ study by Mori et at.<' 64> Figure 20 shows 
how the twin on the conjugate plane apparently thickens by cross-slip of partials from the 
primary slip bands, S,, S2 etc. leaving stair-rod dislocations or undissociated Frank partials 
at A1 , A2 etc. This micrograph clearly does not show the nucleation of the twin, but if the 
interpretation is correct, it does support the growth mechanism of Mori and Fujita. It is also 
relevant to the problem of slip- twin intersection, considered in Section 6.2. 

Fig. 19. Micrographs illustrating the contrast behavior of dislocations L, M and N shown in Fig. 18 
for different reflections. The planes of the micrographs are (a) ~(001), (b) ~(112) and (c) ~(001). 
CD and GH are the projections of the [tO I] and [O!T] vectors on the (001) plane. The marker represents 

one micron (after Mahajan and Chin0 58)). 
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Fig. 20. The cross slip of the leading partials of the primary dislocations onto the conjugate plane. 
The marks S1 io S5 denote the primary slip bands. The marks A1 to A3 indicate the accumulations 
of the stair-rod dislocations and the following partials of the primary dislocations (or the combined 
Frank partials) along the intersections between the twin interfaces and the primary slip bands. Mark 
E shows the elastic interaction forming a dipole between the twinning partials on the opposite twin 

interfaces (after Mori and Fujita(l63l). 

The early experimental work of Suzuki and Barrett<9l on silver- gold alloy crystals showed 
that for a tensile axis close to [Til], twinning occurs on the primary slip plane (Ill) in the 
direction [211 ], and this is consistent with the Mahajan- Chin model since the primary and 
coplanar slip directions are [IOI] and [llO], respectively. The coplanar slip decreases as the 
initial stress axis moves towards [001], at which orientation the resolved shear stress for the 
coplanar system is zero. Thus the twinning tendency should decrease on moving away from 
[lll] along the [I 11]- [001] line and there should be no twinning for axes close to [001]. Blewitt 
et af.<8l and Suzuki and Barrettr9J reported, in fact, that twinning usually occurred only for 
tensile axes between [Ill] and [113]. However, in both studies and also in the early work of 
Haasen and King0 70l and Thornton and Mitchell,r171 J twinning on both the primary and the 
conjugate slip planes was observed, with the conjugate plane often most prominent. Later 
investigations(7· 1 59• 1 68~169l have shown that in most f.c.c. metals and alloys, twins form only 
after appreciable slip, and the K1 plane is the most active slip plane (i.e. the primary or 
conjugate plane, depending on the amount of slip before twinning). The twinning stress in 
a tensile test decreases as the orientation of the stress axis approaches < 111), and also as the 
temperature is lowered, provided the twinning occurs in stage III of the work~hardening 
curve, but is little affected by orientation and temperature in stage II. Mahajan and Chin058l 

and Narita and Takamura<159J have each claimed that their respective models account for these 
observations. 

Chin et a/.(19> examined in some detail the behaviour of cobalt- iron single crystals under 
constrained deformation. A specimen was orientated for [1 IO](llO) plane strain compression 
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(i.e. the compression axis was [110]), and the specimen was allowed to elongate along [ITO] 
but was prevented from widening along [001]. The imposed shape change was found 
experimentally to be achieved by a combination of the slip systems [TOl](lll), [OTI](lll), 
[OTT](! IT) and [TOT](llT) and the twinning systems [TI2](Tll) and [TI2](TIT). On the basis 
of the Mahajan-Chin model, the operative slip systems could activate the two observed 
twinning variants, together with [112](111) and [112](111). However, these last two twins 
would elongate the crystal along [110] and so would not be expected. To obtain the observed 
twin systems with the "prismatic" sources of the Venables, the Cohen and Weertman or the 
Fujita and Mori models requires dissociation of a HI TO] dislocation, slip dislocations with 
this Burgers vector cannot be activated either by the applied compressive stress along [II 0] 
or by the reaction stress along [001]. This result thus suggests strongly that the twin nucleus 
comes from a glide-type source rather than a prismatic type source. 

4.7. Twinning in Elemental and Compound Semiconductors 

A dislocation model of twinning in elemental semiconductors such as silicon or germanium 
and in semiconducting III-V or some II-VI compounds like GaAs or CdTe has been recently 
developed by Pirouz(14•173-174l and Pirouz and Hazzledine(l?s) and will be discussed next because 
of many similarities to f.c.c. twinning. As already noted, the diamond structure is a double 
lattice structure obtained by placing atoms on two interpenetrating f.c.c. lattices with the 
second origin at ~a(lll). The zinc-blende (or sphalerite) structure of the III-V compounds 
is obtained by segregating each atomic species on to one of these two f.c.c. lattices. Denoting 
the two f.c.c. lattice sites by Roman and Greek letters respectively, both structures may also 
be viewed as a stacking of atomic {Ill} layers in the sequence .. . AexBfJCy ... where the 
close-packed planes of the f.c.c. structure are replaced by double layers ex-B, P-C, y-A. The 
interplanar distances ex-B, etc. are one third of the separations A-ex, etc. Each atom has four 
nearest neighbours at a distance of aJ3j4; for an atom in plane ex, three of these neighbours 
are in plane B and one of them is in plane A. The slip and twinning planes and directions 
are identical with those of the f.c.c. structure, but a distinction has to be made between slip 
on a plane midway between the closely spaced ex and B layers, and slip on a plane between 
the widely spaced A and ex layers. Lattice dislocations with Burgers vector ta< 110) may exist, 
in principle, in either plane, and may then be dissociated into Shockley partials. The two sets 
of dislocations are called the "glide" and "shuffle" sets, respectively. 

The deformation behaviour of these semiconductors shows that they have relatively 
immobile dislocations due to high Peierls-Nabarro forces, especially for dislocations aligned 
along (110) directions. Thus the important lattice dislocations are either pure screws or 
have their Burgers vectors at ± 60° to their line direction; when dissociated into pairs of 
Shockley partials, the screw dislocation consists of two 30° partials whereas a 60° dislocation 
consists of a 90° and a 30° partial. At low temperatures, brittle fracture usually occurs with 
very little evidence of plastic deformation, and at high temperatures, <I TO){ Ill} slip is 
observed. In silicon, the ductile-brittle transition is at about 700°C (varying with strain rate) 
but plastic deformation may be observed below this temperature, for example by subjecting 
the specimen to a uniform hydrostatic pressure in addition to a uniaxial compressive stress. 
It is found experimentally that plastic deformation at these low temperatures is predom
inantly by twinning even when single crystals are orientated for single slip.05l It is an 
important feature of Pirouz's model that for both screw and 60° dislocations, experiments 
have shown appreciable differences in the mobilities of the leading and trailing Shockley 
partials. Moreover, since the motion is thermally activated, both mobilities are strongly 



74 Progress in Materials Science 

temperature dependent, and any difference in mobility will be more pronounced at lower 
temperatures. 

Consider the dissociation of part of a screw dislocation of the glide set with Burgers vector 
BA into partials ~A+ B~ lying on plane a between pinning points Hand H' (see Fig. 21). 
If the leading partial ~A has a mobility much higher than that of the trailing partial, it may 
be decoupled from it under the action of a suitable shear stress and by acting as a Frank-Read 
source, rotating about H and H', a closed loop of stacking fault, expanding in the plane a 
is obtained together with a short segment of ~A which approaches the trailing partial B~ from 
the other side. Pirouz originally assumed that despite their mutual repulsion, the two partials 
could be forced together by the stress field to reform the perfect dislocation line with lattice 
Burgers vector BA. This line is then assumed to cross-slip on to the next {Ill} lattice plane, 
where it redissociates to produce a second layer of fault. Clearly this is a ratchet mechanism 
very similar to that of Venables; it was in fact considered by Venables for f.c.c. twinning, but 
was rejected because he considered the stress to separate the two partials of a dissociated glide 
dislocation to be too large. Thus although the model might, in principle, apply to f.c.c. 
twinning, the situation is clearly more favourable in diamond cubic and zinc-blende 
structures, where quite large differences in the mobilities of the two partials have actually been 
observed. The model does, however, have the unsatisfactory feature of all ratchet mechan
isms, namely the necessity for opposite dissociation and recombination processes, which is 
rather suggestive of a "pulling up by bootstraps" operation. The difficulty of the recombina
tion can partly be avoided, as was pointed out later,<175> by adopting a cross-slip mechanism 
due to FriedeJ076> and Escaig<177> which allows the extended configuration to cross-slip without 

(a) (b) 

(d) (e) 

Fig. 21. Schematic illustration of the model proposed by Pirouz and Hazzledine075> for the formation 
of {Ill} twins in diamond cubic and zinc-blende structures. 
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recombination over the whole length of the dislocation, and which moreover can operate 
without any resolved shear component of the applied stress on the cross-slip plane. Granted 
that this is possible, however, it is not at all clear why the cross-slipped segments should 
immediately move back into the next {Ill} plane parallel to the original glide plane. Once 
again, it must be emphasized that all these hypothetical displacements are taking place within 
the core of the dislocation and really need an atomistic description. 

Note that this theory is not a pole mechanism even if the original dislocation leaves the 
twin plane on opposite sides at the two pinning points. This is because there is no component 
of Burgers vector normal to the K1 plane. Nevertheless, the mechanism is obviously similar 
to the ratchet mechanism previously described, and re-emphasizes that the latter does not 
actually utilize the topological properties of a pole dislocation. 

Pirouz has also applied this model to compound semiconductors which are effectively 
long-range ordered versions of the diamond cubic structures. In the zinc-blende structure, 
the A B C layers are occupied by one kind of atom, and the IX fJ y layers by another kind. 
It follows that the lattice and partial dislocations responsible for plastic deformation have 
the same Burgers vectors, but the core of the dislocation may consist entirely of atoms of 
one species. A difference in mobility of the two partials in an extended dislocation may then 
be enhanced. However, the experimental results of Androussi et al.05> that Zn-doped GaAs 
crystals, oriented for single slip, twinned at ambient temperature whereas n-type crystals 
did not twin presents a difficulty for the theory. Rabier and Boivin0 78> found the differ
ence in the mobilities of the Shockley partials is much smaller in Zn-doped crystals than in 
n-type crystals, so that according to the Pirouz model the n-type crystals should more 
readily twin. 

4.8. Twinning in Hexagonal Close-Packed Materials 

The analysis of Section 2.7, summarized in Table 3, shows that the main deformation 
twins in h.c.p. materials have K, planes of type {lOT2} (all metals) and {1121} and {1122} 
(Ti group metals). In addition, {1124} twins which are conjugate to {1122} twins have been 
found in Mg and Ti, and there are several other modes, notably the conjugate q = 8 modes 
{lOTI} and {1013} observed in titanium079·180> and magnesium,<66> respectively. Transform
ation twinning of either type I with K1 = { 1 OT 1 }, q = 4 or its type II equivalent is frequently 
observed after the b.c.c.-h.c.p. martensitic transformation. 

Twinning in h.c.p. materials was reviewed by Yoo<ISI) in 1981, and Fig. 22 shows his 
plot of twinning shear s vs c /a for the main twinning modes, with the observed modes 
for seven h.c.p. metals superimposed. The {IOT2} mode is found in all cases, despite the 
shear reversal at y = 3! already noted. If a uniaxial tensile stress is applied along the c axis, 
twins of a particular mode may form if the mode line in Fig. 22 has a negative slope, whilst 
a crystal or grain subjected to compression along its c axis may twin only if the line has a 
positive slope. This rule is reversed for the two conjugate modes, listed on the same plots 
as their primary modes. Thus with respect to the c axis, the {1121}, { 1124} and {I 0 I3} 
twins are "tension" twins, and the {1122} and {lOTI} twins are "compression" twins. The 
{IOT2} twin is a compression twin for cadmium and zinc and a tension twin for all the 
other metals. 

As already noted, Thompson and Millard< 100> in considering the formation of {IOT2} twins 
in h.c.p. metals independently suggested a pole mechanism. Since this is a q = 4 mode, the 
expected twinning dislocation is a zonal dislocation of double step height with a Burgers 
vector given by eq. (38). Thompson and Millard considered that a "major" dislocation of 
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Fig. 22. Variation of twinning shear with the axial ratio for the seven hexagonal metals. A filled symbol 
indicates that the twin mode is an active mode (after Yoo(ISll). 

Burgers vector [0001] lying on the (1012) plane of the matrix could be incorporated into a 
{1012} twin, where it becomes a sessile dislocation with a Burgers vector of type (1010) in 
the twin lattice, and it then leaves in the interface a double step, i.e. (in later terminology) 
a zonal twinning dislocation, of Burgers vector f (lOTI) where f (see eq. (38a)) is approxi
mately +(1/17) for ideal cja and -(1/13) for zinc which has cja ~ (7/2)~. Thompson and 
Millard apparently treated the pole dislocation and the twin nucleus as distinct defects which 
interact, and they did not explicitly consider a combined nucleation and growth mechanisms 
from an initial dissociation of a single lattice dislocation. Whether or not growth begins from 
a single stacking fault, examination of the crystallography (very helpful equations in tensor 
notation are given by Saxl(l 82- 185l) shows that the Thompson-Millard relation should be 
written 

b8 = [I010h = [OOOI]p- f[1011]p (62) 

in order to obtain a true pole mechanism. Once again, the opposite dissociation of the pole 
dislocation of the form of eq. (51) will give an anti-generating node. Both dissociations are 
energetically unfavourable, but the higher elastic energy is associated with the dissociation 
which gives a pure pole mechanism. If the initial nucleus is a single layer fault, or a fault of 
[say] 1-10 layers, there will also be the usual large stress opposing the passing of opposite 
elements of the twinning dislocation. 

Evidence for twinning dislocations in a {1012} interface in zinc has been obtained 
recently,(l 86l but the authors estimate the Burgers vector to be about i<1011) whereas eq. (38) 
with cja ~ (7/2)! gives a vector of about (1/13)(1011). Thus the step height, or the 
"quantum" of deformation, is suggested to be 6-8 lattice planes instead of the expected two 
planes. There seems no obvious reason for such multiple twinning dislocations. 

The Burgers vector of an elementary twinning dislocation for the { 112 I} mode is about 
(1/35)(1126) in cobalt, and Vaidya and Mahajan°87> suggested the following reaction of two 
t<2I13) dislocations with a <I 100) dislocation would yield a multilayer stacking fault 
approximating to a thin twin. 

2 X t<2II3) + <liOO) = 12 X fr;<II26) (63) 
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The (1 TOO) dislocations might arise from interactions between dislocations with a type 
Burgers vectors, e.g. 

H2HO] + Hl210] = [1 TOO] (64) 

This mechanism is thus similar in concept to that suggested by Mahajan and Chin<158> for f.c.c. 
twinning, although the spontaneous spreading of the Burgers vector into 36 adjacent planes 
may not seem very probable. Moreover, in the case of { 1121} twinning, we have noted already 
that elementary twinning dislocations are probably split into steps of atomic height which 
are thus partial twinning dislocations (supplementary displacement dislocations) with Burgers 
vectors of about (1/70)(1126). 

Hirth and Lothe041 > pointed out that either a true pole or a ratchet mechanism may be 
envisaged for {1122} twinning in a similar fashion to that discussed for {10T2} twinning, the 
pole being formed from a lattice dislocation with a Burgers vector t<I213). No specific 
mechanisms appear to have been suggested for the formation of the remaining h.c.p. twins, 
but the recent results of Serra et a/. <97> on the structure of twinning dislocations in the various 
h.c.p. twin interfaces re-emphasize the possible significance of the structure and properties, 
especially the frictional resistance to motion (or Peierls-Nabarro force) which a twinning 
dislocation must overcome in order to advance the growth of the twin. 

Table 5 summarizes some results for the computed energies of the relaxed K1 interfaces 
and for various structural and energetic features of steps (i.e. twinning dislocations) in 
these interfaces. The last column shows the applied shear strain at which the twinning 
dislocation was displaced along the interface. Some twinning dislocations were found to 
have narrow (three-dimensional) cores, -a-2a in width, and did not move until the 
applied shear strain exceeded "'1-4%. Others have wider (planar) cores (4-6a) and glide 
along the K1 interface at much smaller applied strains. The highly glissile steps are those 
in {10I2} and {1121} twin interfaces and the steps of low mobility are those which corre
spond to the observed { 1122} and { 10 T 1} deformation twinning modes. The difference 
in mobility of the twinning dislocations in {10T2} and {lOTI} is striking in view of the 
apparent similarity of their interface structures; it is believed to be related to the mag
nitude and complexity of the atomic shuffles. In fact, the mobilities of the steps of height 
d in the { 1121} interface and 2d in the { 10 T 1} interface, corresponding to the unobserved 
{1121} high shear mode and the transformation twinning mode previously discussed, 
were found to be respectively very much higher and slightly higher than those of the 
steps in the observed modes. It follows from the table that the mobility of a twinning 
dislocation is not simply related to the magnitude of either its Burgers vector or of the 

Table 5. Computed Energies and Properties of Some h.c.p. twin Interfaces1971 

i' by Dis!. Energy (l /a) Core Critical 
Kl (l fa 2) (eq.) s b2ja2 h/d line elast. core width strain 

IOI2 1.15 38a 0.12 1/51 2 0.1 0.1 0.0 6a 0.002 
1122 0.92 39a 0.27 4/33 3 3.7 1.6 2.1 a 0.014 
1121 0.73 40a 0.61 3/140 I 0.3 0.3 0.0 11a 0.001 2 
IOI1 0.64 41a 0.15 25/123 4 4.0 2.3 1.7 a 0.02 

42 0.36 37/123 2 3.6 2.4 1.2 2a 0.006 

Notes: This table is adapted, with minor corrections, from Tables I and 2 of Ref. (97). Only observed 
deformation modes plus the observed {!Oil} t~ansformation twinning mode are listed. The values of sand 
of b2fa 2 apply to the ideal axial ratio, y = (8/W. The energy unit l is the depth of the atomic pair potential 
at the nearest neighbour distance. 
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twinning shear, although it probably is infuenced by these quantities as well as by the 
complexity of the shuffles. 

Why do the twins with twinning dislocations which are difficult to move form, especially 
when for the same K1 plane there is in each case an alternative mode with a more mobile 
twinning dislocation? Part of the answer may be that, although of course the detailed 
orientation variation is different for each mode, the general sense of applied stress (e.g. tension 
along the c axis) favours the formation of {1012}, {1121} and the high shear {1122} mode, 
whilst the opposite sense can lead only to the formation of {1121} or to {lOll} twins of the 
observed deformation or transformation modes. Thus, as pointed out by Serra eta/., the high 
shear {1122} mode is competing with two other modes, both with very glissile interface 
steps, so that it is not surprising that it does not form, especially as its high shear may 
make it difficult to nucleate. The two low mobility cases also compete with each other for 
the relief of compressive c-axis stresses, and in titanium<179•180l and zirconium<188l the dominant 
deformation mode is temperature dependent, namely {1122} twinning below ~400°C and a 
mixture of slip and {lOll} twinning above this temperature. Paton and Backofenoso) deduced 
that the deformation is controlled by nucleation of { 1122} twins at low temperatures and 
propagaton of {lOll} twins at high temperatures. The slightly more mobile twinning 
dislocations of the transformation twinning { 10 I 1} mode have a higher shear than those of 
the observed deformation mode, and Serra eta/. suggest that this may inhibit their nucleation. 
However, these twins form very readily during martensitic transformation, and it is not 
entirely clear why they should not form during deformation. 

Various factors which appear to govern the choice of the observed twinning modes were 
considered in Section 2.1 0, but the physics of this choice are better represented by the 
statement that operative modes must be relatively easy to nucleate and must have glissile 
interfaces. 

5. INFLUENCE OF MATERIAL VARIABLES ON DEFORMATION TWINNING 

Many variables (temperature; strain rate; amount of pre-strain; specimen and/or grain size; 
crystal orientation or specimen texture; doping and/or alloy composition; precipitates or 
dispersed phases; etc.) may influence the twinning behaviour of a particular material. Some 
of these factors are difficult to separate, being strongly interdependent. In this section, the 
variables which (apparently) best illustrate the physical basis of twinning are given most 
attention. 

5.1. Orientation Dependence: Is There a CRSS for Twinning? 

When twinning is caused by an external stress, it is clearly necessary that the applied forces 
do work during the formation of the twin, i.e. that the shear stress across the twinning plane 
and resolved in the twinning direction should be positive. An important difference between 
twinning and slip deformation is that twinning is polarized, i.e. reversal of the 'II direction 
will not produce a twin. This means that for a single crystal of given orientation with respect 
to a uniaxially applied stress, some variants of a particular twin mode should operate only 
in tension, whereas others should operate only in compression. If the single crystal has 
completely twinned, it follows that all directions in the initially obtuse sector between K1 and 
K2 will have increased in length, whilst all directions in the acute sector will have decreased. 
However, Frank and Thompson< 189l pointed out that a slightly different rule will apply to an 
actual tension or compression test in a single crystal which deforms initially by forming a thin 
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twin lamella. The average shear strain of the specimen is now fs where s is the twinning shear 
and f is the volume fraction of the twin. In the limit f--+ 0, there will be an increase in length 
for a specimen axis in the upper right quadrant formed by Kt and the plane normal to 'It 
(see Fig. 1) and a decrease in length for an axis in the upper left quadrant. 

An obvious hypothesis is that twin initiation or growth occurs when the externally applied 
shear stress across the Kt plane, resolved in the 'It direction, reaches a critical value. Such 
a law would be analogous to Schmid's law for slip, and several early investigations pro
vided evidence in support of its validity. Unfortunately, the scatter in measured twinning 
stresses is generally too large and the range of orientations available is too small to provide 
an adequate test of this hypothesis, especially as the incidence of twinning rather than slip 
as the preferred mode of deformation is itself very sensitive to orientation. Moreover, as for 
slip, the observed values depend strongly on purity levels or other variables. Thus Thompson 
and Millardooo> reported a critical resolved shear stress (crss) of 13.5 Pa for twinning in 
cadmium, whereas Bell and Cahn<tzo> found values as divergent as 41 and 4.9 Pa for the same 
metal. 

Experimental measurements of the "twinning stress" are subject to several reservations and 
their significance is limited by considerable variations in the stress vs strain curves associated 
with twinning. In many b.c.c. metals and alloys, deformation by twinning in tensile or 
compression tests of either single crystals or polycrystalline specimens is characterized by 
large load drops. These abrupt changes of stress are often observed from the beginning of 
deformation, and there is frequently little evidence of accompanying dislocation activity. The 
first load drop sometimes occurs during elastic loading, thus indicating that if prior slip is 
needed to nucleate twins, it must be microslip on a very fine scale. Figures 23 and 24 show 
stress vs strain curves obtained respectively in early work on polycrystalline niobium090> and 
in more recent work09tl on very pure single crystals of Nb-0.33wt%Zr. 

Large load drops are observed mainly during deformation at very low temperatures, where 
they may represent adiabatic softening accompanying a local slip avalanche rather than 
twinning. A detailed theory of adiabatic heating and softening was first given by Basinski<t92> 
who showed that the effect is favoured by a high temperature sensitivity of the flow stress 
and a low work-hardening rate. Thus, it is always desirable to obtain metallographic evidence 
to support a conclusion that observed load drops are due to twinning. Siedersleben and 
Taylor<193l found, for example, that load drops in single crystals of Li-48at%Mg deformed 
in tension at 10 K were associated with twinning, but that no twins were visible after 
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Fig. 25. Shear-stress vs shear-strain curves of Li-57at%Mg alloy crystals deformed in tension at 10 K 
(after Siedersleben and Taylor0931). 

somewhat larger load drops in crystals of Li-57at%Mg (see Fig. 25). The small magnitude 
of the serrations in Li-48at%Mg may indicate a difference, much smaller than in the niobium 
case, between the stresses needed for twin nucleation and twin growth. The tendency towards 
a smooth stress vs strain curve is even more pronounced in Fe-~25at%Be alloys which were 
intensively investigated by Bolling and Richman and their coworkers,<38•194-196l and by Green 
and Cohen.<39) Alloys quenched from a high temperature are random b.c.c. solutions, but 
long-range order develops on heat treating in the range 325-425oC. As noted in Section 2.6, 
the ordered structure was originally believed094•196l to be homogeneous D03 , but the later 
work of Green and Cohen and others showed that it is a two-phase mixture of the ex-solid 
solution and an ordered B2 phase. 

Bolling and Richman concluded that disordered alloys deform almost entirely by 
twinning, a condition which they called continual mechanical twinning and defined as 
deformation under conditions such that the flow stress for twinning is less than that for 
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macroscopic slip. The deformation is thus produced mainly (an estimated 99% in the case 
of Fe3 Be) by twin formation, giving a serrated stress vs strain curve but no large load drops. 
Figure 26 shows load vs contraction curves for disordered crystals of the same size and 
orientation deformed at three different temperatures with cyclic alternation of two different 
strain rates (crosshead velocities). Although the curves are not smooth, the amplitude of the 
jerky flow is only a small fraction of the stress level. In contrast to most cases of slip 
deformation, there is a positive temperature dependence and negative strain rate sensitivity 
of the flow stress. Similar effects have been reported in polycrystalline specimens of some 
other iron alloys.<38·195> 

Balling and Richman considered the ordered alloys to deform by b.c.c. pseudo-twinning 
of the 003 structure and pointed out that the strain after loading was almost completely 
recovered on unloading (Fig. 27). This remarkable 'pseudo-' (or 'super-') elasticity is part 
of a more general set of related phenomena which have been much studied in martensitic 
shape memory alloys.<21 •197> As described in Section 2.6, Green and Cohen were able to show 
that the ordered alloys deform by pseudo-twinning of the B2 regions to give effectively an 
orthorhombic martensitic product. The B2 regions were much smaller than the twins, so that 
each twin sheared a region of matrix which contained an appreciable number of coherent B2 
regions. The twinning strain is accommodated elastically by the untwinned portion of the a 
matrix, so that there is both an elastic and a chemical contribution to the driving force for 
the reverse ('un-pseudo-twinning') transformation on unloading. 

Whether or not a superlattice will deform so as to produce a pseudo twin depends 
essentially on the additional free energy of the new structure, or at very low temperatures 
on its extra internal energy or enthalpy. If a B2 structure is progressively sheared on a { 112} 
plane in a <II 1) direction, there is no symmetry condition which requires the energy to have 
an extremum at s = 2-!, even though in the b.c.c. case there is no excess energy at this (twin) 
configuration. Paxton°98> has recently used density functional theory to calculate energy 
vs shear magnitude curves at 0 K for various B2 alloys. These curves show local minima near 
to s = 2-! for CuZn (P-brass) and FeBe, but for NiAI and NiTi the energy continued to rise 
smoothly through this value. These results indicate that the pseudo-twin phase is mechanically 
unstable at 0 K in these latter two systems, but a monoclinic (slightly distorted orthorhom
bic) phase is metastable in CuZn and FeBe. However, Paxton concludes that the calculated 
energy difference between the B2 and the sheared structure is too large for pseudo-twinning 
to be feasible. The pseudo-twinning in Fe3 Be is thus attributed to the non-stoichometric 
composition and the very small ( < 10 nm) particles of the B2 phase. 
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As previously discussed, twins in f.c.c. metals and alloys usually form on either the pri
mary or the conjugate slip planes (probably depending on which of them is currently most 
active) but only after the tensile axis has been rotated near to, or beyond, the (001 )-(Ill) 
symmetry line where the primary and conjugate systems are equally stressed. The detailed 
crystallography has already been presented in Section 4.6 and typical stress vs strain curves 
are shown in Fig. 28. The onset of twinning is usually signalled by a rather small load 
drop at quite a high strain and stress level, attained as a result of work-hardening (see 
Fig. 28). At very low temperatures, faulting and twin nucleation may become copious and 
there are then no load drops and only a small inflection in the curve marks the onset of 
twinning. 

In h.c.p. metals and alloys, twinning may occur without apparent load drops. Figure 29 
shows stress vs strain curves for polycrystalline specimens of magnesium tested in tension 
and compression at three different strain rates.<199> There is a strong fibre texture in the 
extruded specimen rods with the basal plane parallel to the axis; this is a favourable 
orientation for {1012} twinning in compression but not in tension; see text relating to Fig. 
22 which is described in terms of a stress axis normal to the basal plane. The very large 
difference in the stress vs strain curves in tension and compression is thus attributable to 
the utilization of the { 1012} twinning mode to assist in the compressive deformation. 
Another example of the effects of the polarity of twinning is provided by the h.c.p. metals 
titanium and zirconium. These are remarkably similar in most of their structures and 
properties, including stress vs strain curves at relatively high temperatures where slip 
dominates as the deformation mechanism. However, for some reason, {1122} twinning 
occurs much more readily in titanium than in zirconium, and at 77 K, the incidence of 
twinning leads to very different stress vs strain curves.099> 

The above examples illustrate the difficulty of defining a 'twinning stress' from the 
measured deformation behaviour, and with the prospect of abrupt load drops, very hard 
machines may be required in order not to lose part of the change. The classical experiments 
of Bell and Cahn020l showed that it may be necessary to consider separately the stress needed 
for nucleation of a twin and the (usually lower) growth stress. The initiation of twinning 
probably depends on nucleation if large, discontinuous load drops are observed during 
normal tensile or compression tests, as in most b.c.c. metals at very low temperatures. In 
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many of the nucleation models already discussed, twins form at intersections of slip lines, or 
in other configurations where the external stress is enhanced, so that the true local stress 
cannot be measured. Thus tests of a possible crss law for nucleation have to be made with 
great care to avoid such stress concentrations. Although the upper and lower stresses of a 
load drop may be related respectively to the nucleation and propagation stresses of the twins, 
the discontinuity in stress may nevertheless have been increased by adiabatic softening which 
is as likely to be triggered by rapid twin formation as by a slip avalanche. 

Tests on b.c.c. metals give contradictory results on whether or not a crss law applies, but 
the majority of the evidence is that the orientation dependence is more complex. Body-centred 
cubic metals twin readily (without appreciable prior slip) only at low temperatures and/or 
high strain rates, and under these conditions analysis is complicated by peculiarities in the 
slip behaviour which include breakdown of the Schmid law of crss for slip and large 
orientation dependences and asymmetries. Some early results on polycrystalline niobium(l 99> 

indicated no differences between tensile and compressive tests at relatively high temperatures 
where deformation involved usual slip modes, but the first twin formed in compression at 
77 K at a stress below the yield stress for slip in tension, and the first tensile twin formed at 
20.4 K at a higher stress, but considerably below the extrapolated yield stress for slip. In very 
pure metals, later work has shown that the situation may be much more complex; and major 
components of the total strain may result from slip on unpredicted (so-called 'anomalous') 
variants of the usual slip system. These effects are believed to be a consequence of the core 
structure of the screw dislocation in b.c.c. metals. <118·149> 

Conflicting evidence for and against a crss law for f.c.c. twinning may also be found in the 
literature. An early comprehensive analysis was carried out by Venables<161 > who pointed out 
that because of the large strains undergone by most f.c.c. crystals prior to twinning, it is 
difficult to calculate accurately the axis rotation, and hence the Schmid factors for either slip 
or twinning. In copper alloys of low stacking fault energy, this problem is further complicated 
by 'overshoot', i.e. continued deformation by slip on the primary slip plane after the 
symmetry axis is reached. The data available to Venables consisted of results on pure copper 
and silver and on copper alloys and Ag-Au alloys. He made plots of the variation of twin 
stress against the ratio of the critical resolved shear stress for slip to that for twinning at the 
onset of twinning and found for both copper and silver that the twinning stress apparently 
decreases slightly with increasing values of this parameter in the range 0.9-1.1. However, as 
he emphasized, there is a very large scatter in individual results and little reliance can be given 
to these conclusions, which are further complicated by the orientation dependence of the 
occurrence of twinning. In the Ag-Au alloys, <9> twinning becomes easier as the original tensile 
axis approaches <Ill) or the < 111 >-< 110) zone; most of the twinning occurs between < 311) 
and < 111 ). Similar results have been reported for copper and for copper alloys;(l 70- 172> in the 
case of copper, Blewitt et a[.<8> found the twinning stress at 77 K to be so high that fracture 
occurred before twinning except for orientations very close to <I 11). 

An observation which has been reported very frequently and for many different materials 
is that when the orientation of the stress axis is varied in single crystals subjected to tension 
or compression,<200-203 > or in polycrystalline materials with a textureY04> the first twins to form 
are almost always those of the variant for which the resolved shear stress is largest. In b.c.c. 
crystals, for example, with a stress axis within the unit triangle defined by [001] [011] and [Ill], 
the two variants in tension should be ( 1 T 2) [T 11] near [00 1] and (TT 2) [ 111} near the [0 11 ]-[T 11] 
boundary, whilst in compression the single variant (211) [Ill] should operate over the whole 
triangle. The different variants imply an asymmetry in the applied stress for twinning in 
tension and compression and this carries over to polycrystalline textured materials, as shown 
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for iron by Richards and ReidY041 For materials without a texture, no difference in the 
twinning stresses for tension and compression was found, but the twinned volume fractions 
and the fraction of grains containing twins were both appreciably larger in compression than 
in tension. The authors point out that on average the grains, even in a random aggregate, 
are more favourably orientated for twinning under an applied compressive stress than under 
a tensile stress. Similar results apply to f.c.c. metals and alloys where twins form on either 
the primary or the conjugate { 111} slip planes, or in the case of constrained deformation, 
on the most highly stressed system.< 191 This confirms that the applied shear stress in the K1 

plane and the q1 direction is the most important stress component, but nevertheless leaves 
open the possibility of a variation with stress axis orientation of the critical value of this 
stress at which twins first form. Twinning is essentially antisymmetric, inasmuch as an 
oppositely directed (i.e. 'anti-twinning') shear stress of comparable magnitude to that needed 
to produce twinning will generally have no effect. This contrasts with slip deformation in 
which the crss for forward and reverse deformation is comparable (but not necessarily 
identical unless the slip elements possess certain point group symmetries) in most materials. 
Both twinning vs anti-twinning slip asymmetries and those due to the influence of other 
components of the stress tensor on dislocation core structures were first discussed for b.c.c. 
metals,< 118·149l but are now known to be significant at low temperatures in very many structures 
in which the dislocation core can loosely be described as three-dimensional rather than 
two-dimensional, i.e. not spread along the slip plane, as in dissociated f.c.c. dislocations. 
These recent investigations on slip have the effect of making it seem rather improbable that 
a crss law ever holds for twinning. 

5.2. Temperature 

Twinning in most b.c.c., f.c.c. or h.c.p. metals and in intermetallic compounds, semi
conductors, etc., increases in importance as the temperature is lowered. This is often formally 
represented by a twinning stress vs temperature curve which increases less steeply at low 
temperatures than the yield stress or the flow stress for plastic deformation by slip; in some 
cases, the measured twinning stress actually decreases slightly with decreasing temperature. 
Mahajan and Williams in their 1973 review suggested that b.c.c. metals have a negative 
dependence of twinning stress on temperature, whilst f.c.c. metals actually have a positive, 
albeit smaller, temperature sensitivity. However, Reed-Hill< 1991 emphasized the positive 
temperature dependence found by Bolling and Richman( 1941 for a b.c.c. Fe-25at%Be alloy 
(see Fig. 26) and after reviewing the available literature, he concluded that whenever the 
deformation occurs mainly by twinning, the flow stress tends to have a positive temperature 
dependence and a negative strain rate dependence. 

In any event, if the twinning stress rises less rapidly with decreasing temperature than the 
flow stress, a transition to twinning can be expected. The temperature effect is likely to be 
most pronounced in materials (e.g. b.c.c. metals) for which the increase in (dislocation) yield 
or flow stress with decreasing temperature is large, and less obvious in materials such as f.c.c. 
metals which have yield stresses less sensitive to temperature. In the latter case, the flow stress 
may ultimately reach the twinning stress by work-hardening, and the transition from slip to 
twinning as the temperature is reduced is governed, at least in part, by the strong temperature 
dependence of the work-hardening rate in such materials. 

In both polycrystalline specimens and pure single crystals of b.c.c. metals, the effect of 
temperature on the stress vs strain curve is often dramatic; Figs 23 and 24 illustrate a general 
tendency for the transition from slip to twinning as the main deformation mode to occur at 
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lower temperatures in single crystals than in polycrystals and also at lower temperatures in 
metals or substitutional alloys free of interstitial impurities. Similar results have been obtained 
for the other transition metals with a b.c.c. structure and also, in a quite different temperature 
range, for b.c.c. alkali metals, e.g. lithium-magnesium093> and potassium. 

Although, as already described, twinning in f.c.c. metals and alloys frequently occurs 
without large load drops and only after appreciable glide deformation, the contribution of 
twinning to the overall deformation nevertheless increases as the temperature is reduced. The 
first unambiguous experimental evidence for deformation twinning in a f.c.c. material<8> was 
made on copper deformed at 4 K, but in alloys of lower stacking fault energy, twinning at 
or above room temperature is quite common. In f.c.c. metals and alloys, temperature affects 
not only the competition between slip and twinning, but also the type of twin that is formed. 
Alloys with very low fault energies (e.g. 70:30 brass or Cu-8%Al) may at low temperatures 
undergo localized twinning on a very fine scale, and the resultant, almost homogeneous 
deformation becomes, in the limit, indistinguishable from the copious formation of individual 
faults. At higher temperatures, or with higher fault energies, conventional large twins may 
form with load drops in a tensile test, and localized flow of the specimen. This is indicative 
of a transition to a nucleation-controlled twin stress, as in b.c.c. metals. There is sometimes 
an intermediate range in which bands of local flow contain twins on the primary and 
conjugate slip systems. 

Early, very careful work by Suzuki and Barrett<9> on single crystals of silver-gold alloys 
of varying compositions but fixed orientation established three regimes similar to those 
described above. Their results are shown in Fig. 30; in region I (relatively high temperatures) 
a localized band of twins is formed on the primary or conjugate slip planes and spreads 
across the specimen into two opposite quadrants. This is followed by a second band of twins 
on the other (conjugate or primary) planes and this band grows into the other two quad
rants. Twinning is accompanied by load drops. In region II twin bands form on either the 
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Fig. 30. Temperature-concentration diagram showing the occurrence of twinning in Ag-Au alloys. In 
domain I, twinning occurs on the primary slip plane. In domain II, twins are observed on the primary 
as well on the conjugate planes but in different regions. In domain III, the two types of twins coexist 
in the same region. Failure to twin in the main part of the specimen is denoted by the squares (after 

Suzuki and Barrett!91 ). 



86 Progress in Materials Science 

primary or the conjugate plane in different parts of the specimen, and grow until they 
impinge on each other. In region III, which was found only in silver-rich alloys at low 
temperatures, twins form copiously on both primary and conjugate planes, as already 
indicated, and there are no sharp load drops. Figure 30 is a temperature-composition 
diagram illustrating these changes. 

In general, the size of the load drop due to f.c.c. twinning increases with increas
ing temperature and stacking fault energy, and this may indicate an increasing ratio of 
nucleation stress to propagation stress. The load drops, though not usually so pronounced 
as those in b.c.c. materials, nevertheless make measurements of the true stress to initiate 
twinning very difficult. A lower yield stress for twinning can, however, be defined in 
circumstances where there is apparently a Luders band type deformation following the yield 
drop. 

Twinning in polycrystalline h.c.p. metals and alloys often arises because of the lack of an 
adequate number of slip systems to effect an imposed strain. The measured twinning stress 
decreases slightly with decreasing temperature for most h.c.p. modes, except for {1011} where 
an increase has been reported. In an investigation of polycrystaline zirconium, Reed-HiW 1991 

found that room temperature deformation at moderate strain rates is accomplished mainly 
by {1010} prismatic slip and {1012} twinning, together with infrequent {1121} twins. At 
77 K, the amount of {1012} twinning was considerably increased and there were many more 
{ 1121} twins and also some { 1122} twins. Similar conclusions by Paton and Backofen<1801 were 
mentioned at the end of Section 4.8. 

As already noted in Section 4.7, both elemental and compound semi-conductors appar
ently deform at low temperatures by twinning rather than slip, although the behaviour is 
complicated in most cases by the ductile-brittle transition. In Pirouz' model which has already 
been discussed, the transition to twinning is attributed to the high Peierls force and hence 
very low mobility of lattice dislocations at low temperatures, combined with a greater 
difference in the mobilities of different partials. 

The slow variation of twinning stress with temperature and the prevalence of twinning at 
low temperatures together support the conclusion that twin nucleation is not thermally 
activated but rather occurs at places of high stress concentration. Once nucleated, there is 
evidence that over an appreciable temperature range, twins can grow more readily than slip 
can propagate. In very general terms, this is because partial or twinning dislocations do not 
become immobilized so readily as lattice dislocations, either through the intrinsically sessile 
nature of some core structures or because of work-hardening. Overall, twinning is a much 
more regulated process than is slip. 

5.3. Strain Rate 

Strain rate and temperature effects in materials science are usually coupled by an 
Arrhennius type equation, which is characteristic of a thermally activated process. A rapid 
rate of change of some property with temperature then indicates that the same property has 
a high sensitivity to an imposed rate, and vice versa. The expected general equivalence of high 
strain rates and low temperatures is certainly valid for twinning, but as already noted, the 
tendency to substitute twinning for slip, and the actual magnitude of the twinning stress, 
change rather slowly with temperature but are very sensitive to the strain rate. Indeed under 
shock loading or severe impact conditions, all b.c.c. and many f.c.c. and h.c.p. materials 
deform solely by twinning. Face-centred cubic materials with high stacking fault energies, 
especially aluminium alloys, do not twin under normal deformation conditions, but twinning 
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has been observed in shock-loaded Al-Mg alloys0 'l and even, emanating from a crack, in a 
foil of pure aluminium.<205l 

The general equivalence of low temperatures and high strain rates is also shown, in 
particular in b.c.c. structures, by the dislocation structures of untwinned matrix regions 
examined by thin foil electron microscopy after deformation. A characteristic structure after 
shock loading consists of a uniform distribution of long screw dislocations. <206•207) This is quite 
different from the tangled dislocation structures found after room temperature deformation 
at normal strain rates, but is very similar to the well known screw dislocation structures 
observed after deformation at low temperatures. As discussed in Section 4.5, the immobile 
screw dislocations are often assumed to dissociate into twin embryos. 

As shown in Fig. 26, a twin stress which increases with increasing temperature will 
decrease with increasing strain rate, both changes being opposite to those observed when slip 
is thermally activated. Such correlated effects of temperature and strain rate have been 
fund experimentally in other alloys, e.g. Cu-5at%Ge.<208l Following Reed-Hill's sugges
tion<199l that this behaviour is always observed when twinning is the main mode of 
deformation, it is possible that the twinning stress always has this intrinsic dependence, 
but that it is masked when twinning and slip occur together and slip produces the major 
part of the strain. 

A possible interpretation of the positive temperature and negative strain rate sensitivity was 
suggested by Bolling and Richman.<'94l They considered that an enclosed lenticular twin must 
always have some accommodating slip near its edge because of the high stress concentration, 
and that the applied stress needed to propagate the twin will increase with an increase in this 
slip activity. If dislocation glide is thermally activated, as is often assumed, then the normal 
sensitivity to temperature and strain rate will govern the slip, but will be inverted as far as 
twinning is concerned. 

Experiments show that individual twins frequently form with effective interface velocities 
which are appreciable fractions of the velocity of sound, and this makes nonsense of some 
of the theories of growth described above. A full understanding of why a twin can apparently 
form much more rapidly than a slip band is not yet available, but if dislocations are still 
utilized in the growth, it follows that they must have unusually high mobilities, possibly 
because the core structure of a twinning dislocation is very diffuse. 

5.4. Grain Size 

The lower yield stresses for both slip and twinning in polycrystalline b.c.c. metals and alloys 
often obey a Hall-Petch relation<209•210l of the form 

(65) 

and 

(66) 

where dis the mean grain diameter, ay is the yield or flow stress, a0 represents a friction stress 
opposing the motion of the dislocations or twins, and the superscripts s,t denote deformation 
by slip and twinning, respectively. 

A conventional explanation of the usual Hall-Petch equation is based on the assumption 
that the slip deformation will be halted at a grain boundary until the stress acting on a near-by 
source in the next grain at a distance r~ from the head of the pileup is large enough to unpin 
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or otherwise activate this source. Since the effective stress acting on the dislocations is a~- a~, 

the stress at the source is (a~- a~)(d/r~)~ and at yielding or flow this must equal some critical 
value, a~. This gives the Hall-Petch eq. with ky = a~(r~)!. The material parameter a~ may be 
identified with the yield or flow stress needed to unpin a pre-existing dislocation source, or, 
to create spontaneosly a dislocation source. Clearly a similar interpretation may be advanced 
for a twinning stress which satisfies eq. (66). 

Not all experimental results support the Hall-Petch equation and there are differences even 
in quite similar alloys. Vohringer<211 l found a good Hall-Petch relation for Cu-5at%Sn alloys 
at 295 K but for Cu-15at%Zn alloys at 77 K (over a similar range of grain sizes) the twinning 
stress increased linearly with d -l rather than d -!. 

5.5. Chemical Composition 

Many investigations have been made of the effects of substitutional or interstitial solutes 
on the twinning behaviour of single phase alloys; the results are complex and difficult to 
summarize, but certain important parameters have been identified. The effect of interstitial 
solutes in b.c.c. metals and alloys is almost invariably to decrease and ultimately to remove 
twinning as a deformation mechanism. As pointed out by Magee et al.,<212J this may be a 
simple consequence of the crystallography of twinning. In a disordered b.c.c. interstitial 
solid solution, the interstitial atoms occupy octahedral sites <~OO) and <HO> in a random 
fashion, but only 1/3 of these sites are translated directly by the shear into equivalent 
octahedral sites of the twinned structure. Figure 31 shows that in the absence of shuffling, 
the other two-thirds of the sites are carried into twin positions of type <H~ ), i.e. midway 
between two nearest neighbour solvent atoms. If this actually happened, it would be 
analogous to 'pseudo-twinning' in ordered alloys, but clearly the additional energy of an 

(b) 

Fig. 31. The effect of the (112) twinning shear on the octahedral interstitial sites in a body-centred cubic 
lattice. (a) [TlO] projection showing only those octahedral sites which are sheared to octahedral sites 
in the twin. 0: substitutional atoms in plane of projection; e: possible interstitial atom positions in 
plane of projection; 0: substitutional atoms a/~2 above (and below) plane of projection. (b) [TIO] 
projection showing the octahedral sites which are sheared to sites along the close-packed directions 
in the twin. 0: substitutional sites in plane of projection; e: possible interstitial atom positions a /2~2 
above (and below) plane of projection; 0: substitutional sites a/~2 above (and below) plane of 

projection (after Magee et a/.1 212'). 
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interstitial in such a site would be prohibitive, and when twins form in interstitial b.c.c. alloys, 
the presumption must be that those atoms which would be sheared to the wrong sites have 
to undergo shuffles in addition to the transformation shear. Whilst such shuffles appear 
perfectly feasible, they nevertheless represent a constraint not required of twinning in the pure 
solvent, so that this crystallographic circumstance may account for the inhibition of twinning 
and/or the increase in the twinning stress which is found experimentally in many interstitial 
alloys. Sites for interstitial solutes in f.c.c. and h.c.p. materials are also carried to non-equiv
alent sites by the twinning shear so that similar effects might be expected from the inter
stitial atom shuffling during twinning. However, the differences in twinning behaviour will 
make it more difficult to isolate the effect of a small concentration of interstitial solutes in 
the close-packed structures. 

Substitutional solutes often increase the tendency of b.c.c. metals to deform by twinning, 
although the effects of different solutes are variable. The outstanding example already 
mentioned is that of iron-beryllium alloys with about 25at%Be, but Bolling and Richman0 95> 

subsequently found many other alloys of iron which show a similar transition from slip 
to twinning as the main mode of deformation when the concentration of solute, c, exceeds 
a critical value which decreases with increasing values of the solid-liquid distribution 
coefficient, km, at the melting point of iron. (km is merely a convenient parameter for 
differentiating solutes on the basis of their misfit.) At room temperature, the yield stress 
initially increased monotonically with clln km 1. The initial deformation mode at 77 K was 
generally twinning, and as already noted, the twinning stress at this tempeerature was 
slightly lower than that at room temperature, but in non-ordered alloys was independent of 
solute concentration and type. Similar promotion of twinning is found when vanadium is 
dissolved in niobium<213•214> and in the group VIA metals molybdenum and tungsten, twin
ning is greatly enhanced by additions of rhenium,<2' 5> the so-called 'rhenium effect'. All of 
these observations can be explained by the hypothesis that the substitutional solute affects 
the core structures and hence the mobilities of the screw dislocations. 

Substitutional solutes often have a pronounced effect on the deformation twinning 
behaviour of f.c.c. metals, and in an early discussion, Venables found an apparent correlation 
between the twinning stress and the measured stacking fault energy (see Fig. 32). Such a 
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Fig. 32. The dependence of the twinning stress on stacking fault energy for copper-base alloys (after 
Venables11611 ). 
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relation would be expected if the twin stress were indeed a nucleation stress, and nucleation 
involved either spontaneous faulting or faults produced by the dissociation of a lattice 
dislocation. One difficulty with this simple model is that cobalt-iron alloys with 8-9.5wt%Fe 
twin more readily, at equivalent strains, than many copper alloys,<216l even though the 
latter have lower stacking fault energies. A possible reason is that twinning in f.c.c. is 
favoured not specifically by low fault energy but by a tendency to planar slip. The works of 
Gerold and Karnthaler<217l and of Hong and Laird<218l show that planar slip is prominent in 
alloys which exhibit short range order and/or clustering, as well as in those of low fault 
energy. A correlation of twinning with planar slip might well be expected from models which 
postulate single or coplanar slip on the currently active slip plane. 

Both elemental and compound semi-conducting materials are brittle at low temperatures, 
but they may often be induced to deform plastically under a confining pressure, a method 
which was first used successfully for minerals.<219l This method has been used recently to study 
the effect of doping on the mechanical properties of GaAs single crystals.05•220•221 l Figure 33(a) 
shows stress vs strain curves at various temperatures for intrinsic GaAs crystals oriented for 
single slip, whilst Fig. 33(b) shows comparable curves for n- and p-type crystals doped with 
2.2 x 1024 m-3 atoms of Se and 2 x 1024 atoms of Zn, respectively. The stress required to 
deform the intrinsic compound is very dependent on the temperature, as is expected since the 
covalent and ionic bonding will result in a high Peierls-Nabarro force, but there are also 
marked differences between the p- and n-doped crystals, deformed under comparable 
conditions of temperature, grain size, etc. (see Fig. 33(b)). Auxiliary experiments<220l have 
shown that the higher stress levels of the p-type crystals are not due to the constrained testing. 
Similar tests have also been made on isoelectronic substitutions, such as In and these show 
that such crystals are softer than the intrinsic crystals which themselves are softer than the 
p-type crystals.05l 

Transmission electron microscopy shows that in the zinc-doped crystals and to a lesser 
extent in the intrinsic material, twinning on the primary { 111} slip plane co-exists with slip, 
and the twinning shear in the (1/6)(211) direction was confirmed by measurement of surface 
tilts.115> On the other hand, no twins ere found in the indium-doped and n-type crystals. As 
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Fig. 33. (a) Stress-strain curves under confining pressure for intrinsic GaAs oriented for single slip 
(£ • = 2 x w-s s- 1 ). (b) Stress-strain curves under confining pressure for n-and p-type GaAs oriented 

for single slip (after Boivin et a[.i22°1). 
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discussed in Section 4.7, these differences may be due to changes in the relative mobilities of 
different partial dislocations induced by doping, but the measurements0781 indicate that the 
mobility difference is smaller in the p-doped crystals than it is in the n-doped crystals. It may 
be that cross-slip is inhibited in the p-doped material and the fine planar slip then leads to 
twin formation by a coplanar mechanism.< 158l 

5.6. Prestrain 

Numerous observations show that twinning in iron,<20u 02·222·223l niobium0 51.1 90·224·225l and 
chromium<2' 0l can be suppressed by a strain previously applied at a higher temperature. The 
formation of shock twins in iron<226·2271 and molybdenum<2281 can also be suppressed by 
prestraining, and a comparison of these results with those of Rosenfield et a/.<2291 shows that 
the amount of prestrain needed to suppress twinning depends on the strain rate subsequently 
imposed. The twinning behaviour of prestrained iron can be restored by aging.<226·229l 

Boucher and Christian° 511 examined the effect of dislocation substructure on the twinning 
behaviour of niobium crystals and found (i) after very small prestrains of the order of 0.5%, 
more twins were observed than in the crystals which were not prestrained, (ii) the prestrain 
required completely to suppress twinning at 77 K is smaller when the substructure produced 
is a homogeneous distribution of screw dislocations, and larger when the distribution is 
heterogeneous, and (iii) the prestrain to suppress twinning also depends on the final testing 
temperature, and increases as the testing temperature decreases. A discussion of these results 
led to the conclusion that the principal effect of the existing substructure is to inhibit twin 
growth. However, the experiments ofMahajan<227l on the shock loading of heavily prestrained 
iron showed that the substructure causes fragmentation of twins but does not appear to affect 
their growth rate significantly. On this basis, prestrain inhibits nucleation rather than growth. 
It is also possible that the homogeneous dislocation substructure led to very fine twins which 
escaped detection, rather than to elimination of twinning. 

5.7. Precipitates and Second Phase Particles 

The influence on the twinning behaviour of the size, distribution and volume fraction of 
second phase particles, as well as that of factors such as the coherency of the interphase 
interface has not been systematically investigated. Interstitial elements in excess of their 
solubility limits, tend to suppress twinning in niobium.<2301 Aging or precipitation in many 
other alloys, e.g. Ti-5.1 wt%Zr,<2301 also leads either to delay in formation or to suppression 
of twinning. In some cases, part of this effect is undoubtedly due to the difficulty or 
impossibility of propagating a twin across a partly coherent or incoherent boundary, and part 
may be due to the complex dislocation structures produced when the composite begins to 
deform. Mahajan et a/.< 1521 investigated the deformation of a spinodally-decomposed 
iron-chromium-cobalt alloy, and found that after aging inside the spinodal, microtwins 
formed during subsequent deformation at ambient temperature. 

The suppression of twinning by incoherent b.c.c. particles has been compared to that by 
pre-strain, since rather similar dislocation substructures are formed around the particles. 
Mahajan et af.< 152l have suggested a more elaborate explanation of the microtwinning in the 
spinodally decomposed alloy; this twinning is attributed to differential friction stresses (or 
Peierls-Nabarro forces) in the Cr- and Fe-rich regions. According to Gray,<'l thoria particles 
dispersed in nickel also prevent twinning, even under shock-loading conditions. However, 
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rather opposite results are quoted by Gray for twinning in Fe-4.6at%Be alloys. In the initial 
stages of precipitation, when finely dispersed clusters have formed, twinning is completely 
suppressed, but twins pass apparently unimpeded through isolated FeBe2 particles when these 
have formed at a later stage of precipitation. 

6. TWIN ACCOMMODATION, TWIN-SLIP AND TWIN-TWIN INTERACTION 

6.1. Twins Terminating Within a Crystal 

Very high stresses are generated in the immediate vicinity of a deformation twin which 
is confined within an externally stressed crystal or a polycrystalline aggregate. These stresses 
and the associated strain energy arise from the resistance of the matrix to the macroscopic 
change of shape in the twinned volume. If the surrounding matrix is either defect-free or 
sufficiently strong, the twinning shear may be accommodated without any plastic defor
mation, and this leads in the ideal case to the phenomena of elastic twinning and 
pseudo-elasticity,<3·20•21 ·231 ·232l which have been described in outline in Section 5.1 (see Fig. 27). 
Strains much larger than normal elastic strains are produced by twin formation as a speci
men is loaded, and are then removed again spontaneously, albeit with some hysteresis, on 
unloading, during which the twins shrink and eventually disappear. The elastic twinning of 
calcite and of some non-metallic compounds was extensively studied in the early Russian 
work of Garber and his coworkers,06l and was comprehensively reviewed by (R.W.) CahnYAl 
Twinning in minerals was later reviewed by Turner07l and further work on calcite was 
described by Williams and Cahn.<231 l Most metals are too soft for elastic twinning, but it has 
been detected in antimony, bismuth, and zinc by Startsev and Kosevich<232l and also in tin.<233l 
A related phenomenon, the formation of thermoelastic martensite, has been widely studied, 
especially in 'shape memory' alloys. Thermoelastic martensite, was discovered and discussed 
by Kurdjumov and Khandros;<234l in addition to the stored elastic energy, there is a chemical 
contribution to the driving force for removal of strain on unloading. As already emphasized, 
'pseudo-twinning' in ordered alloys is properly regarded as a special type of martensitic 
transformation and the resultant chemical term (i.e. the extra energy of the incorrectly 
ordered 'twin') may thus facilitate super-elastic behaviour as shown in Fig. 27. Elastic 
twinning in some minerals may also actually be due to formation of pseudo-twins as has been 
suggested for certain feldspars. <235l 

If a twin is formed without substantial plastic flow, the magnitude of the stress field may 
be calculated approximately from the well known linear elastic model of an inclusion 
developed by Eshelby.0 28l An isolated, plate-shaped twin is most conveniently modelled as 
an oblate spheroid, and the elastic energy of the constrained system per unit volume of twin 
(Section 4.1) is then approximately equal to p. (y I R )s 2• The most important component of 
the elastic stress field is the shear stress resolved on the plane and in the direction of the 
twinning shear. Both in the plane of the plate and in the central plane normal to q1, this is 
the only non-zero stress component, and for any aspect ratio its value in the matrix tends 
to infinity as the tip of the plate in the q1 direction is approached. The resolved shear stress 
in the plane through the centre of the plate normal to q1 is negative up to a distance of the 
order of R, after which it becomes positive if y I R is adequately large. Thus, as is physically 
obvious, the field of an enclosed twin tends to reduce the sharp discontinuity in shear strain 
either by further extending the twin in its own plane or by inducing slip ahead of the twin 
in a direction or directions close to q1 • On the other hand, in the matrix close to the centre 
of the twin plate, the stress field opposes the twinning shear, i.e. it favours an additional shear 
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on, as nearly as possible, the same system but oppositely directed. In general, this reverse 
shear may be accomplished only by slip, since twinning is uni-directional and reverse twinning 
is not possible. If some accommodation of this kind is feasible, the average shape change 
across the twin edge is near zero. 

Eshelby treated the twin and matrix as linear-elastic objects, and this is difficult to justify 
in view of the rather large strains involved, especially in cubic twinning. An alternative 
method of calculation is based on the Orowan model of a twin (Fig. 9). Provided the angle 
of taper is small, the stress field may be attributed to a single or double pile up of circular 
or elliptic loops of twinning dislocation. Unfortunately, the mathematical equations arising 
from this configuration do not have convenient analytical solutions and it is necessary to 
resort to numerical methods in order to make quantitative predictions.<236•237> In principle, the 
most reliable estimates should be obtained from a computer model of a tapered, enclosed thin 
twin, but with realistic interatomic potentials this would probably be formidably difficult and 
expensive in computer time. 

The pile-up model of a blocked twin has very recently been criticized by Miillner and 
Solenthaler,<238•239> who suggest that such a twin will not have a lenticular shape. Their 
alternative proposal is that straight twinning dislocations in edge orientation will be aligned 
in a planar array, forming an incomplete wall, normal to K1 and to "'. They consider first 
whether the maximum repulsive force acting in the glide plane between the first two 
dislocations of a tapering twin can be overcome by the stress field acting on the second 
dislocation. This field is the resultant of the applied stress and the effective pile-up of all the 
subsequent twinning dislocations. A numerical example suggests that for an austenitic steel, 
the shear component of the applied stress acting on the K1 plane and in the"' direction must 
exceed about 125 MPa if there are "'50 dislocations in the pile-up and 12.5 MPa if there are 
500 piled-up dislocations. (The number of lattice planes is of the order of 500 for twin lamellae 
of observed thickness "'100 nm.) It follows that the second dislocation should be able to 
overcome the maximum repulsive force with a pile-up of -60-70 dislocations at an applied 
(tensile or compressive stress) about one-half of the experimental yield stress of "'200 MPa. 
The authors then assume that if the second dislocation overcomes the repulsion of the leading 
dislocation, most of the other dislocations will follow it, so that the pile-up will be converted 
into an (incomplete) wall. An appropriate description of such a blunt-ended configuration 
is a wedge disclination dipole rather than a dislocation pile-up. 

In a second paper,<239> an attempt is made to estimate what fraction of the total number 
of twinning dislocations enter the wall. For N dislocations, of which Mare within the wall, 
the force between the wall and the (M + I )th dislocation may be equated to the pile-up force 
of the (N- M- I) remaining dislocations, and the authors conclude that over 80% of the 
dislocations will be in the wall. They also believe that this change of predicted shape may 
have a large effect on, for example, twin-twin intersection processes. 

There are some difficulties with this model. The authors themselves point out that the 
maximum force is calculated to occur at a very small distance from the edge of the wall, so 
that linear elastic theory should not apply, and also that the use of the pile-up model 
overestimates the forward stress on the dislocation just outside the wall. They claim, without 
any detailed justification, that these effects balance to give a small residual error. Another 
difficulty is that the force between the wall and the next twinning dislocation is entirely 
repulsive in the final equation and the maximum force occurs at a distance which is 
independent of M. These defects possibly appear because the calculations were made with 
the assumption that the last dislocation of the wall and the first one outside it are on the 
same slip plane rather than on immediately adjacent planes. A rather similar recent 
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calculation by Kamat and Hirth<240> dealing with the formation of multiple height ledges in 
phase transformations gives similar results for the maximum elastic force but shows cor
rectly that the force becomes attractive at very small distances, so that the wall configuration 
is metastable in the absence of stress, and the stress needed to add a further dislocation to 
the wall increases with the height of the wall, i.e. with M. 

However, the greatest difficulty in adopting this model is that it is valid only for straight 
edge dislocations; a single set of screw dislocations does not form a low energy configuration 
of this kind, and so the model seems to imply a rectangular twin plate with planar edges 
normal to "' and tapering edges parallel to "'. This morphology has not been reported, but 
it presumably would only develop when the growth parallel to "' was halted by an intersecting 
twin or some other obstacle. Twin-twin intersection is discussed in terms of this model in 
Section 6.3. 

Whether or not plastic accommodation actually occurs depends on a number of material 
parameters, notably the magnitude of the twinning shear, the yield stress and the elastic 
stiffness appropriate for shear on K1• Ling and Owen,<241 > considered the similar problem of 
the martensitic transformation in Fe3 Pt alloys, and used a von Mises' yield criteria to plot 
contours showing the regions of the matrix which would yield for given degrees of long-range 
order, since the above parameters change appreciably with the order. Figure 34 shows 
calculated yield contours for an ellipsoidal plate with varying degrees of long range order (S) 
and aspect ratios. For S = 0, yield occurs all round the plate, even for aspect ratios as low 
as 0.02, and this is the expected condition for a high shear twin in a soft matrix. For high 
values of S, i.e. a relatively strong matrix, plastic deformation is confined to a very small 
region around the sharp edge of the plate, and may not occur in practice, thus giving 
thermoelastic transformation or elastic twinning. 

c/r 
~0.08 
~0.046 

5=0.6 0.02 

z ~0.08 

L~0.04 0.02 
X 5=0.4 

~~:~: 
~0.02 

5=0.2 

0 0.5 1.0 1.5 

x/r 

0.04 
0.02 

Fig. 34. Matrix yield stress contours of an oblate spheroidal plate of Pt3 Fe lying in the x, y plane with 
the transformation shear in the x direction (after Ling and Owen'241 '). 
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The pioneering work on plastic accommodation ahead of the twin came from Sleeswyk( 1091 

who first developed the well-known theory of emissary slip (Fig. 35). He pointed out that in 
a b.c.c. structure, every third twinning dislocation with a Burgers vector ~<Ill) could, in 
principle, dissociate into a lattice dislocation with a Burgers vector~< Ill) and a complemen
tary dislocation with a Burgers vector t<TTI) vector (see eq. (37)). If the lattice dislocation 
now glides into the matrix on the K1 ~ {211} plane, which is a quite common slip plane in 
b.c.c. structures, it leaves three adjacent elementary steps in the twin interface, two of which 
are twinning dislocations and the third is the complementary dislocation. These three steps 
thus have zero net Burgers vector, and they may combine to form a "pure step" with no 
observable shape discontinuity across the three planes. Repetition of this process every three 
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Fig. 35. Dissociation of a non-coherent twin boundary in the b.c.c. lattice (after Sleeswyk11091 ). Two 
layers of atoms are projected on a {I I I} plane. In (a), the boundary between twin and matrix is 
represented as an array of ~<Ill) twinning dislocations on successive { 112} planes. In (b), the 
dissociation has produced slip (emissary) dislocations which move away from the boundary under the 
influence of the stress, and 'complementary' ~<ITT) type twinning dislocations. The residual boundary 
shown in (c) has one complementary disloca-tion to every two twinning dislocations, and produces no 

far-reaching strains in the lattice. 
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planes will lead to a terminating twin with no shear discontinuity across that part of its edge 
from which slip dislocations have been emitted. The discontinuity has, in fact, been 
transferred to the matrix surface which forms the limit of the slipped region. 

According to Frank's rule, reaction (37) is energetically unfavourable, but the Frank 
stability criterion is unlikely to be applicable to a dissociation entirely within the core 
structure of the interface. Although it was noted in Section 3.2 that an isolated complemen
tary dislocation is probably unstable, this need not apply to a complementary dislocation 
flanked on each side by an elementary twinning dislocation. An apparent slight modification 
of Sleeswyk's dissociation was a suggestion by HuW2091 that three adjacent twinning 
dislocations could associate to form a triple step, and their Burgers vectors could combine 
to form the !<I 11) type emissary dislocation, leaving a triple step with no Burgers vector. 
However, this is not really distinguishable from Sleeswyk's proposal that the three single steps 
are aligned normal to K1 following the formation of the emissary dislocation; the two final 
configurations of the pure step will be identical. Moreover, repetition of this reaction every 
three steps over a relatively large distance, will allow all the steps to be aligned and thus to 
form a stress-free facet normal to K1 • There is an alternative reaction in which a lattice 
dislocation of opposite Burgers vector is emitted from a matrix source, or is created 
spontaneously as a dipole or a closed loop. If the! (III) dislocation travels towards the twin 
and eventually combines with one of the twinning dislocations to give a complementary 
dislocation, the final configuration is indistinguishable from the emissary model. However, 
the probability of the matrix dislocations being nucleated at exactly three plane intervals must 
be very low, so that if this is the physical mechanism, the slip shear will only approximately 
equal the twinning shear. The final shape change occurs around the periphery of the 
combination of twin+ slipped region, as indicated in Fig. 35. 

The transfer of the shear discontinuity from the limit of the twin to another internal surface 
may not greatly reduce the strain energy, and for an isolated, stopped twin, a substantial 
reduction can only be accomplished if the emissary dislocation, or the other half of a dipole 
or loop, continues to move until it encounters a free surface (or, possibly, an incoherent, 
high-angle grain boundary). This produces the familiar tilting of the surface and allows much 
of the strain energy to be released. 

When it is mechanistically possible, plastic accommodation by reverse shearing of a region 
adjacent to the twin is also efficient in reducing the strain field. In some martensitic 
transformations, there is a near degeneracy in the crystallography such that adjacent, 
nearly parallel plates may have nearly opposite shape changes so that their fields largely 
cancel. Ling and Owen found that in a case where the entire matrix adjacent to the surface 
of an isolated partly ordered plate of Fe3 Pt of given aspect ratio (would yield plastically), 
yielding would be confined to a small region close to the extreme tip when two such plates 
were side by side and in contact along their central planes normal to q1 • The yield region 
is further reduced when more plates are added, thus making eventually a parallel array of 
plates with common K1 interfaces. As explained above, it is not possible to form twins with 
oppositely directed shears, but a closely-related effect is found in many martensitic trans
formations in which the product regions consist of arrays of parallel mutually twinned 
regions with (on average) a fixed ratio of twin volume to matrix volume. The function of 
these twins is to combine the deformation obtained from the lattice change with the 
volume averaged twinning shear in order to obtain an average macroscopic deformation 
which is an invariant plane strain, as required by the crystallographic theory of martensite. 
Twinning and detwinning in such arrays is often important in thermoelastic deformation and 
pseudo-elasticity. 
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Returning to the case of the isolated twin, it was recognized long before Sleeswyk's work 
that side by side accommodation can result from slip or in certain cases kink band formation. 
Figure 36 illustrates some of the possible effects. 

In b.c.c. crystals, the slip and twinning directions coincide and the K1 plane is a frequently 
observed slip plane; this simplifies the problem of plastic accommodation and makes it 
possible to envisage exact continuation of the twinning shear. Figure 37 due to Sleeswyk 
provides evidence for the propagation of the shear forward from a stopped twin; a 
sub-boundary ahead of the twin acts as a 'marker' and is seen to have been sheared. 
However, extensive studies have shown that although slip at the tips of twins in b.c.c. 
materials is frequently observed, the actual accommodation processes may be more complex. 
Hull<104l found that in silicon-iron the slip direction was always the same as the twinning 
direction, but the slip frequently takes place on the { 110} type planes containing this direction. 
In a detailed study of slip patterns in a Mo-35at%Re alloy, Mahajan<106> found evidence for 
both simple emissary slip on the twinning plane, as in the Sleeswyk model, and for slip on 
two planes which was then not confined to the region directly ahead of the twin. However, 
the slip near some twins was much more complex and dislocations with Burgers vectors not 
parallel to the twinning direction were involved. 

a 

(a) (b) 
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(e) (f) 

Fig. 36. The accommodation of the shape change due to twin formation (schematic): (a) unconstrained 
twin forming in a single crystal; (b) lenticular twin accommodated elastically in the matrix; (c) and 
(d) accommodation by kink boundaries in matrix; (e) accommodation by slip in the matrix; (f) 

accommodation by slip in matrix and twin. The twin is labeled fJ (after Christian<20>). 
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Fig. 37. Deformation twins formed in pure Fe during compression at 77 K showing the displacement 
of a subboundary of B ahead of a twin which has stopped at A (after SleeswykCI09>). 

The theory of emissary slip implies a physical separation of the shape change associated 
with twin formation and the change of lattice orientation. Sleeswyk considered separation 
during growth, so that two distinct interfaces, one representing a shear strain discontinuity 
and the other an orientational discontinuity, move independently through the parent crystal 
as it is consumed by the twin. However, if the emissary slip has been efficient, there will be 
virtually no driving force to displace the true twin (change in orientation) boundary. This 
growth model thus seems less probable than the alternative assumption that emissary slip is 
initiated only after the twin interface has been halted. 

The general shape of the twin boundary may be expected to be either a doubly convex 
or a plano-convex lens, as shown in Fig. 38, and evidence for these types of twin has been 
obtained by Sleeswyk for iron and and by Votava and Sleeswyk<242) for molybdenum- rhenium 
alloys. However, some twin shapes are observed to be much less regular, possibly as a 
result of obstacles which hold up the twin- matrix interface in a local region. Figure 39 
shows how, by removing the stress field of the interface, emissary slip allows irregular 
morphologies to develop with only small energetic penalties. Slightly different results were 
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Fig. 38. To illustrate the two types of emissary dislo
cation array and associated twin front observed in IX-iron 
and molybdenum-rhenium alloys (after Votava and 

Sleeswyk<242>). 
Fig. 39. Schematic drawing to show that twins may 
occupy only parts of the regions of emissary slip (after 

Sleeswyk<109> ). 

obtained by Hull,<104l probably because he studied silicon-iron alloys which slip mainly on 

{110} planes rather than {112} planes. He found that even in the ideal case where a twin 

traversed the entire cross-section of a single crystal, only one of its two interfaces was 

completely planar. The other interface intersected the free surface in a series of zig-zag 

markings (see Fig. 40) which Hull showed were the traces of {110} +another type (possibly 

{112}) slip planes. This morphology results when the appropriate interface is halted just 

below the free surface and its stress field is relieved by matrix slip, on the protruding side 

of the tilted surface. 
Although the crystallography may be more complex, the phenomenon of emissary slip has 

been observed in other crystal structures, and as detailed by Mahajan and Chin<243l should 

be of general application except when the twinning shear is very small. For f.c.c. materials, 

the twinning K1 plane is the normal slip plane, but slip has never been observed in the '1 1 

direction. However, the equivalent of (112) emissary slip is obtained if two slip dislocations 

with Burgers vectors !<IOT) and !<Oli) glide away from each three-plane group at the twin 
tip. Mahajan and Chin<243l have analyzed the slip structures ahead of twins in thin foils of 
a Co-Fe alloy and found them to be equivalent to resultant slip on the twinning plane. The 
same result was obtained by Vaidya and Mahajan<187l for {1012} and {1121} twins in single 

crystals of hexagonal cobalt. Accommodation by primary kink bands, formed from arrays 
of basal plane dislocations, as shown in Fig. 36, is very common in h. c. p. metals<244-247l and 

Slip 

Fig. 40. Schematic representation of the shape of the serrations that may develop at the surface due 
to emissary slip when a twin terminates below the surface (after Hull< 104>). 
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Fig. 41. Schematic diagram in the plane of shear illustrating the form of accommodation of a (!Of2) 
twin; the angles and surface tilts are exaggerated. (a and b) Movement of opposite twin boundaries 
as observed on an (0001) surface. (c and d) Movement of opposite boundaries as observed on a (!OTO) 

surface (after Roberts and Partridge<2491). 

in some cases there are several kinks each corresponding to an abrupt change in twin thickness 
below the surface. Secondary kinks formed from non-basal plane dislocations<248> are also 
commonly observed. 

Roberts and Partridge<249> made a very detailed study of the accommodation around 
individual {1012} twins and interacting pairs of {1012} and {1012} twins in magnesium, and 
found that the accommodation depends on the position of the moving twin boundaries and 
on the orientation of the free surface. As in the silicon-iron crystals studied by Hull, opposite 
boundaries of a single twin behave differently as a free surface is approached. On one side 
of the twin, the surface tilt is accommodated mainly by {1010} kink bands in the matrix, but 
on the other side, the principal accommodation is by basal slip within the twin (see Fig. 41). 
Two interacting twins were found to grow independently if each was able to utilize its own 
accommodating deformation, but when one twin effectively blocked the other, additional 
kink bands were formed inside the obstacle twin which ultimately led to the twins being in 
contact over a common surface. 

6.2. Interaction Between Slip and Twinning 

A growing twin which encounters a pre-existing slip line or band with few remaining 
dislocations will presumably propagate unhindered through the slipped region. If the slip 
extends to a free surface, the slip traces (like any other fiducial marks) will be deviated into 
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a new orientation in the twinned region. This is the basis for one standard method of 
measuring the twinning shear. If, however, the slip band is work-hardened, i.e. if it con
tains dislocations, the twin may have difficulty in penetrating it, and when penetration 
does occur, the individual interactions of dislocations with the twin interface have to be 
considered. 

An external slip-band or a growing twin may first encounter an obstacle twin, B, either 
along the notionally flat matrix~B interface or along the edge or rim of B. Edge to edge 
encounters will be rare if the in-plane growth velocity is high, as is often the case. When 
edge-to-edge intersection does occur, the incident lattice or twinning dislocations may wrap 
around the barrier twin (if it is not too thick) and hence form pile-ups pressing against both 
faces of B. Equally, a slip-band or a twin meeting a planar interface of B not too far from 
the edge of B may wrap around this edge and so form a pile-up on the opposite face. Thus 
with either initial configuration, interactions with both the fully coherent K1 interfaces 
and the edge of B may have to be considered. In some cases edge to edge intersection 
may lead to branching of the twins. However, the major part of the published theoretical 
and experimental work deals only with propagation of slip or twinning across the planar K1 

interface. 
The systematic treatment of this problem, and of its frequently considered inverse, the 

penetration of slip dislocations into a twin which forms an obstacle in the path of the slip, 
began with the work of Sleeswyk and Verbraak.<250l A pinned dislocation line which is 
engulfed by a growing twin will be reorientated within the twin because of the twinning shear; 
an obvious assumption is that the new direction of the dislocation line and its new Burgers 
vector are the corresponding direction and vector produced by the lattice deformation S, and 
this means that the slip plane in the twin will be the plane corresponding to the parent slip 
plane. As mentioned previously, it is also possible that the twin interface will cause the 
dislocation to dissociate into other dislocations, and various possible reactions are discussed 
below for the inverse process in which a gliding dislocation crosses a stationary twin interface. 
Many such reactions are energetically unfavourable and in the absence of a sufficient stress 
concentration, the matrix dislocation might then act as an obstacle to the continued growth 
of the twin. Under these circumstances, a highly dislocated region may lead to fragmentation 
of the twin, i.e. islands of untwinned region, as is frequently observed in b.c.c. materials. 
Sleeswyk proposed that this might be a result of emissary dislocations bypassing the obstacle, 
leaving shear loops around it, and the model is obviously similar to that of Fig. 39 for the 
production of twins with irregular shapes. A difficulty arises when the Burgers vector of the 
dislocations is not parallel to the composition plane of the twin so that they cannot cross-slip 
on to this plane, and the propagation of the twin would then result in a high jog density. 
Mahajan(207·227l suggested that this difficulty could be avoided if the propagating twinning 
partials loop around the deformed regions, and that this was the reason why fragmented twins 
are frequently observed in some materials. 

Consider now the penetration of an existing twin by slip dislocations of the matrix. It is 
immediately obvious that slip is unlikely to continue undeviated into the twin since even in 
cubic structures the original slip plane and direction do not constitute a physically convincing, 
atomic slip system in the twinned lattice. For example, if a dislocation with a Burgers vector 
oft <I 10) gliding on a {ITT} plane of a f.c.c. matrix were, without dissociating, to cross the 
{Ill} composition plane of a twin, its slip plane would then be {311} and its Burgers vector 
i<I 14) referred to the twin basis. (There are, however, some exceptional cases where there 
is experimental evidence that slip inside twins has been forced to take place on physically 
improbable systems.) Sleeswyk and Verbraak considered dislocation~twin interactions in 
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b.c.c. materials, with the assumption that the matrix slip plane, like the K1 plane of the twin, 
is of type {211 }, and they showed that a lattice vector of the parent may dissociate into a 
lattice vector of the twin (with reasonably low indices) plus a number of elementary twin
ning dislocations. Note that if the twin is considered just as an obstacle, it is irrelevant 
whether it is a deformation, an annealing or a growth twin, provided they all have interfaces 
with identical atomic structures. Variation in the orientation of the applied stress will thus 
allow any slip band to interact with a twin of particular orientation. However, a defor
mation twin which has formed under the same applied stress as that which is now respon
sible for the slip will probably be subject to matrix slip on only a limited number of 
systems, namely those for which the resolved shear stress has the same sign as that producing 
the twin. 

Sleeswyk and Verbraak considered only Burgers vectors, and thus failed to recognize an 
important geometrical constraint on the slip plane in the twin; if a dislocation is to glide 
into the twin on some plane, thus continuing to propagate at least part of the original 
matrix slip shear, the slip planes in matrix and twin must intersect the twin-matrix inter
face along a common direction which is the orientation of the dislocation as it crosses the 
interface. A systematic general theory, applicable to all crystal structures was given by 
Saxl.(lsz-Jss) Much of the theory is implicit in the early work on pole-mechanisms, so that 
the following description may be considered along with the previous accounts in Sections 
4.3, 4.4 and 4.6. 

It is useful first to distinguish one special case of slip across a twin boundary, namely when 
the Burgers vector of the slip dislocations, bA, is parallel to the twin interface and hence to 
the line of intersection of the slip and twinning planes. The dislocations then encounter the 
interface in screw orientation, and they may (geometrically) cross-slip into the twin on any 
plane in the zone of bA without leaving a step in the interface. The Burgers vector in the twin 
has the same matrix representation as in the matrix, or is trivially reversed, depending on how 
the orientation relation is defined, i.e. how the twin axes are labelled. (Rotations IV or II of 
eq. (6) are generally preferred to reflections, I or III, in order to keep both sets of axes 
'right-handed'.) 

In all other cases of slip propagation, the component of bA normal to K1 means that a step 
must be produced along the length of an originally flat interface which has been crossed by 
a dislocation. If the dislocation glides into the twin, the only geometrical restrictions are that 
it must do so on some plane in the zone of the line of intersection and that it must have a 
Burgers vector which is a lattice vector in that plane. The original Burgers vector must thus 
dissociate to give a new slip vector within the twin, and in this case the step at the interface 
will be a twinning dislocation with a Burgers vector equivalent to an integral number of 
elementary twinning dislocations;<182- 185J this follows simply since the components of the slip 
vectors in parent and twin normal to K1 are equal. For a type I (or compound) twin, one 
of the geometrically possible slip planes in the twin is the mirror image in K1 of the matrix 
slip plane, and these two planes are thus crystallographically equivalent. Similarly, for a type 
II twin, a plane with the same crystallographic indices as the primary slip plane is obtained 
by a 180° rotation about '1 1 • (Note that types I and II are here distinguished solely on the 
basis of the orientation relations in order that the result be not confined to deformation 
twins.) For both orientations, this symmetry-related twin plane is likely to be the preferred 
slip plane provided the angles between slip and twinning planes and directions are not too 
large to permit an external stress to give a reasonably large resolved shear stress on each 
system. Another possibility is that slip in a deformation twin will be on the plane and in the 
direction specified by the lattice corespondence. However, the correspondence has special 
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significance only if the twin is actually growing; a { 111} f.c.c. twin interface, for example, 

might represent an annealing twin or any one of three possible deformation twin variants. 

In general, the matrix slip plane and the plane in the twin which is related to it by the lattice 

correspondence will only be crystallographically equivalent planes when the slip plane is 

actually the K2 plane or the slip direction is the q2 direction of an appropriate deformation 

twinning mode. Corresponding slip was represented in eq. (51) where the dislocation has 

Burgers vector bA in the matrix, and b8 (the corresponding vector to bA) in the twin. The 

remaining dislocation bT is then a step in the coherent twin interface representing an 

elementary or zonal twinning dislocation of the deformation mode with the assumed 

correspondence. This situation was discussed by Saxl who emphasized that for q > 2, a lattice 

vector of the parent may have a corresponding vector which is only a partial lattice vector 

of the twin, so that in order to continue the slip, an integral number of parent dislocations 

must combine to produce a single glissile dislocation in the twin. When this condition is 

satisfied, the step left in the interface necessarily represents a zonal rather than an elementary 

twinning dislocation. The twinning dislocation must remain in the interface but must move 

away from the original line of intersection if successive dislocations of a pile-up are to 

penetrate into the twin. As it moves away, the twin, over the area swept, increases or decreases 

in thickness by the step height. If a limited length of dislocation crosses into the twin, the 

twinning dislocation may rotate about either or both crossing points, and the configuration 

is that of a generating node, as already discussed. If the dislocation b8 glides right through 

the twin to the opposite K1 interface, it may there reform the matrix dislocation bA by the 
inverse of the reaction (51) and glide away into the matrix, leaving a step or ledge in the 

second interface of Burgers vector - b1 • There may then be a generating node on each 

interface. 
In most cases, slip on a corresponding system is unfavourable since the slip plane and 

direction are not close-packed; for example, a HI 1 0] dislocation on a ( 1 II) slip plane in a 

f.c.c. structure corresponds to a dislocation with a [00 l] Burgers vector on a (0 1 0) slip plane 

of a (111)[112] deformation twin. Penetration into the twin on such a slip system seems 

unlikely (although unusual slip systems have been observed in some metals) so that it is 

generally believed that further decomposition into glissile systems will occur. Decompositions 

of single dislocations are often unfavourable (as judged by the Frank rule), but if an external 

stress causes a dislocation pile-up on a slip plane intersecting a twin, the stress concentration 
may be sufficient to initiate the decomposition of the leading dislocation at the interface. The 
work done by the applied stress when this dissociation just enables the lead dislocation to 
escape, and to be replaced by a new dislocation at the tail of the pile-up, is readily seen to 
be proportional to the number of dislocations in the pile-up. Thus if this number is sufficiently 
large, i.e. if the applied stress is high enough, the work done will outweigh the Frank 

imbalance of energy. 
For b.c.c. crystals, detailed analysis is complicated by the observation that glide planes of 

different crystallographic types are frequently found to be operative in the same material 

under different conditions, and macroscopic glide may also occur on high index or irrational 

planes, which are not necessarily those of maximum resolved shear stress. At an atomic level, 

slip is usually regarded as confined to {110} andjor {112} planes, although, in some cases, 

reasonably good experimental evidence for {123} slip has been obtained,018·251 l and exper

iments on slip-twin interaction (see below) have confirmed that slip on {123} planes does 

occur when there is a suitable stress concentration. Note that a {112} plane contains only 

one ( 11 I) direction, so that there is a unique screw dislocation which is able to cross the twin 

without leaving a step; if the obstacle twin is a deformation twin, there is only one possible 
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mode for each interface and the Burgers vector of the cross-slipping dislocation is parallel 
to the q1 direction of this mode. However, in the b.c.c. case, the mirror image of the primary 
slip plane is not the only crystallographically equivalent plane of the twin on which this 
dislocation might glide. Three matrix planes of type { 0 II} intersect the { 112} twinning plane 
in the q1 =<II I) direction, as do two {121} planes, and the same numbers of possible slip 
planes in the twin meet along this direction. The possibility that the matrix slip plane is 
identical with the K1 interface of the barrier twin is excluded here as slip on this plane could 
only either enter or leave the twin along its edge or periphery; this has already been considered 
in connection with emissary slip. However, it is possible, in principle, for the screw 
dislocations to cross-glide along this interface rather than enter the twin. Finally, there are 
two { 123} planes in the (II I) zone of both matrix and twin, and these could, in principle, 
also act as atomic slip planes. 

This means that for any twin obstacle, there are up to five different {110} or {112} slip 
systems in which the glide dislocations are in screw orientation when they meet the interface 
in the q1 direction, and even more possible twin systems which can continue the slip. A simple 
criterion might be that the slip plane pair will normally be two planes of favoured type (e.g. 
both {II 0} or both {112}) for which the lower of the two resolved shear stresses is greatest. 
Experiments by Tomsett and Bevis/252> Partridge and Peei<253> and Vallance and Bevis<254> first 
established the importance of the resolved shear stress acting on the slip systems of both 
matrix and twin, but the actual choice of the system most able to penetrate the twin is likely 
to be quite complex, because the preferred slip plane in the twin may not be crystallograph
ically equivalent to that in the parent matrix. Mathewson and Edmunds<255> pointed out as 
long ago as 1928 that matrix slip in the q1 direction on any plane should be able to cross 
the twin, but although it has frequently been suggested in the literature that such cross slip 
should encounter only a small resistance, there is little experimental evidence available to 
support the theory in b.c.c. materials. 

When considering the other possible interactions, it is convenient first to list the various 
directions in which the matrix slip plane meets the interface, since these are the zone axes 
of possible slip planes in the twin. Two of the three {110} type planes which are not in the 
q1 zone of a {211} twin have (131) type intersections with the K 1 plane, and the remaining 
{Oil} plane has an (011) intersection normal to the plane of shear. Consider the [131] 
intersection of a (IOI) slip plane with a (211) twin; the only usual slip planes in the [131] 
zone are (lOT) and (ll2). Thus, dissociations of the Burgers vector into other vectors 
representing dislocations which are glissile on these two planes in the twin should be 
considered first. However, the incident slip plane is at "'73° to the {21 I} K 1 plane, as is the 
{lOT} slip plane in the twin. This large angle implies either that the applied shear stress on 
the {lOT} plane in the twin is opposite in sign to that on the matrix slip plane, or that both 
these slip planes have resolved shear stresses much smaller than that on the K 1 plane. For 
this reason, slip on the {112} plane of the twin (at only -33° to {211}) may be the only 
possibility. 

Similarly, in addition to the <II l) intersections of { 112} slip planes with a { 2 I I} twin plane, 
there are nine further intersections, namely one parallel to (011 ), four (not all equivalent) 
to (351), two to (102) and two to (ll3). In every case, of course, the {112} plane in the 
twin which is the mirror reflection of the matrix slip plane is one possibility, but experiment 
shows that this plane is not necessarily that which is operative. 

Although the b.c.c. structure has many slip planes, it has only four <Ill) slip directions; 
two of these directions are 'I 1 ( = [liT] for a (2 I I) twin) and q2 ( = [II I] for the same twin) 
and their corresponding vectors are also <Ill) type vectors of the twin. Since q1 is an 
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invariant vector it has identical (or reversed) indices in the twin coordinates, as discussed 
above; all the other three vectors are of type i ( 5T 1) in the twin lattice and so must decom
pose if slip is to continue into the twin. Consider the possibility of slip on the correspond
ing plane and direction of the twin. For any of the three matrix { 110} planes with slip 
direction parallel to '12 (including the plane of shear) or any of the three {112} planes 
(including K2 ), the corresponding planes in the twin have identical (or reversed) indices, so 
that the physical conditions for slip are also fulfilled, subject to the proviso that the shear 
stress on both matrix and twin systems is adequate and of the correct sign. However, since 
the various slip planes with an '12 Burgers vector intersect the K1 plane in different direc
tions, the only geometrically possible slip on a { 110} or { 112} plane of the twin is in each 
case on the twin plane corresponding to the matrix slip plane; this is, of course, the mirror 
image of the matrix slip plane. Thus, provided the Schmid factors are favourable, matrix 
slip parallel to '12 should be able to cross the twin on a corresponding slip system in which 
both slip plane and direction are crystallographically equivalent to the plane and direction 
of the incident slip. 

The other two matrix (Ill) directions correspond to (110) vectors of the twin, with 
corresponding twin glide planes of type {001 }. Since slip on a (010){001} system is extremely 
unusual in b.c.c. materials, it seems likely that the incident dislocation will dissociate in some 
way other than that of eq. (51) in order to cross the K1 interface. Other possibilities may be 
examined by allowing further dissociations, all of which must satisfy the geometric criteria 
that the slip planes in matrix and twin meet edge to edge in the plane of the interface, that 
the Burgers vector of the slip dislocation in the twin is a repeat vector of the twin lattice and 
has the correct sign to continue rather than oppose the shear produced by the matrix slip, 
and that the slip plane is defined by the line of intersection and the Burgers vector of the new 
dislocation. 

Consider now a particular slip-twin interaction when the slip plane is {112} and the slip 
direction is not parallel to 'II or '12. Mahajan<256> made one of the first detailed TEM 
investigations of dislocations at twin boundaries in a b.c.c. Mo-35at%Re alloy. Figure 42 
shows a slip-twin interaction for which the arbitrary assumption (consistent with the 
Bilby-Crocker sign convention) that K1 = (211) and '1 1 =[II T] has been made. With a 180° 
rotation about [211] to define the coordinate axes in the twin, the slip planes in the matrix 
and twin respectively were found from the projected directions of AA', BB', CC' and DO' 
to be (211) and (23th. (Indices relative to the twin lattice are given the subscript T.) This 
indicated the following reaction which was first suggested by Sleeswyk and Verbraak; in 
addition to the Burgers vectors, slip plane indices are specified as: 

I - I- I--
2[1111211) = c;[l51]0 o.I.s> + 3[llll2T1> (67) 

where 

I - I 
c;[l51]00.1.SJ = 2[lllh(2~1>T· (67a) 

Thus the matrix slip plane intersects the twin in the [T02] = [102h direction and is propagated 
into the twin as a lattice dislocation on the slightly unusual (23th plane. The complementary 
dislocation HTTI], if stable, forms a double step in the K1 interface which may prevent further 
slip if it remains along the original line of intersection. If it glides along the interface, the HTT 1] 
step will decrease the volume of the twin. The decomposition is energetically unfavourable, 
but could occur when the stress concentration at the head of a pile-up of dislocations on the 
matrix (211) slip plane reaches a sufficient value. 



106 Progress in Materials Science 

(a) 

(b) 

Fig. 42. (a) A propagating slip band interacting with a deformation twin in a Mo-35at%Re alloy 
sample. (b) Dark-field image of the twin in (a) AA' and BB' are traces of the slip plane within the 
matrix with the (115) plane, whereas CC' is the trace of the slip plane within the twin with (lll}y plane. 
DD' is the projection of the line of intersection of the (211) and (211) planes on the (115) plane. 

Distance between markers is 250 nm (after Mahajan<256l ) . 

Other possible slip planes in the twin must contain [102h in which the primary slip plane 
meets the twin. There are no {110} planes in the [102] zone, so that if the slip continues 
into the twin on an atomic slip plane of a type normally observed in b.c.c. materials, it must 
do so on the (231) plane which was observed in the experimental work, or on either of the 
only remaining {112} and {123} planes in the [102] zone, namely (2llh //(271) (which is the 
symmetry-related plane) and (231h//(2,TT,T). Mahajan pointed out that the required 
decompositions could be represented by 

I - I I -- I - -
2(111](211) = ;; (115l271) + (;( J11](2TI) + 2(111](231) (68) 
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where 

(68a) 

and 

I - I - - I -- I 
2[Illh11 = 6[5lllw.n + 6[111](2TIJ + 2[1Illz31J (69) 

with 

(69a) 

The slip represented by eqs (68) or (69) is energetically less favourable than that of eq. (67) 
and in addition new perfect dislocations of the parent lattice are produced at the interface, 
thus reducing the effective shear produced by the incident twin. If these dislocations move 
back along the slip plane, they must do so against the applied stress; alternatively, they will 
block the shear transmission and lead to high stress concentrations if they remain in the 
interface between the matrix and the barrier twin. Movement against the applied stress is 
possible in the stress field of the pile-up, but should cease after a limited amount of reverse 
slip because of the formation of a pile-up of these matrix dislocations.<2571 In view of the 
energetic and mechanistic differences, it is not surprising that only dissociation (67) has been 
clearly observed. 

In f.c.c. materials, there are only three matrix {Ill} slip planes, each of which intersects 
the remaining {Ill} plane (the K1 plane of the twin) in a <OlT) direction. Each slip plane 
contains three of the six <I TO) vectors which are normally observed to be the only slip vectors, 
and one of these three directions thus meets the K1 plane in screw orientation so that, as 
already discussed, it may cross-slip into the twin without leaving an interface step. There are 
thus three slip systems which can potentially cross the twin in this way. Each of the three 
{111} matrix planes may be regarded as the K2 plane of a hypothetical deformation mode, 
so that its corresponding plane (rotated but undistorted by the twinning shear) is a { 111} 
plane of the twin; all three <I 1 0) directions in this plane similarly have corresponding <I 10) 
twin vectors. Thus any of the slip dislocations in a matrix slip plane can (geometrically) cross 
the twin on an equivalent slip system which may be regarded as the corresponding slip 
system of one of the three deformation modes sharing the same K1 plane. However, the angle 
between the K1 plane and the incident slip plane is always ~ 70° in f.c.c. crystals, so that it 
is difficult to obtain large shear stresses on both the slip plane and its mirror image plane 
in the twin. 

Twinning in f.c.c. crystals is conveniently shown in a double Thompson tetrahedron<2581 (see 
Fig. 43) in which the matrix planes and directions are represented by ABCD and a twin on 
plane dis represented by A'B'C'D' where A= A', B = B', C = C' and D' is the reflection of 
D in d. Dislocations on planes a, b or c with Burgers vectors BC, CA or AB cross slip as 
screws on to the twin planes a', b' or c', whereas dislocations with other Burgers vectors 
must decompose in order to cross the interface. Dislocation reactions or dissociations may 
be represented by Burgers vector equations expressed in terms of the double tetrahedron, 
but for those who prefer algebra to geometry, the same equations will be given in vector 
form. 

Mahajan and Chin<259l suggested the following dissociations for a dislocation with a !<TO!) 
Burgers vector on a {Ill} slip plane encountering a {I 11} twin boundary: 

(70) 
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D Matrix 

Plane of Twin Boundary 
(i11) 

Twin 

D' 
Fig. 43. The double Thompson's tetrahedron for the twin-matrix orientation relationship. With an 
origin at ~. the co-ordinates of A, B, C, D and D' are, respectively, H2Il], HI2I], HII2], H222] and 

H222] (after Remy<260l). 

DB(a> = BD~<a'h + 2 x ~B<d> 

or in vector form 

!<TO! )pttJ = ~(Tl4)1ml + ~(2IT){TIIJ 
with 

I I I -c;( 14){511} = :z(l!O)T{Illh 

and 

!<IOI ){1 111 = ~(I41 ){511J + t<I2I )lllll 

with 
I - I -c;(l41){511} = :z(l0l)T[Ilth· 

(71) 

(70a) 

(70b) 

(7la) 

(7lb) 

In both cases, the predicted slip in the twin is on the symmetry-related plane, and in view 
of the strong preference for {111} slip in all f.c.c. materials, it is improbable that any other 
slip plane in the twin could be activated. Both reactions are energetically unfavourable 
according to the Frank rule, the increase in elastic (i.e. line) energy being one third of the 
initial energy for eq. (69) and four thirds for eq. (70). On the other hand, an approximate 
calculation by Mahajan and Chin<259> indicates that the compatibility of the strain produced 
by the various defects in the interface region is almost complete for dissociation (71) but not 
for (70). However, the dislocation with Burgers vector A~ of eq. (70) is an ordinary twinning 
dislocation, whereas 2~B in eq. (71) is the f.c.c. equivalent of Sleeswyk's complementary 
dislocation and may be unstable. 

Experimental verification of slip inside a twin on the mirror image of the parent slip plane 
has been obtained from slip band traces on the surfaces of a single crystal of a Co-8wt%Fe 
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which had been deformed in compression under constraints designed to enforce plane strain 
conditions. Examination by optical microscopical techniques<259> showed, as anticipated, that 
two deformation twin variants and two or four slip variants had formed in the deformed 
region, and that the slip traces within twins were always on the {Ill} plane symmetrically 
related to the incident slip plane. In a later electron microscopic study of the interaction of 
dislocations with a thin annealing twin, Remy{260> was able to identify the Burgers vectors of 
the various dislocations. In the electron micrograph shown in Fig. 44, dislocations marked 
I are piling up against the lower twin interface, whilst two dislocations (II) within the twin 
are clearly gliding on the symmetry related plane, and the twinning dislocations (III) left at 
the interface are also visible. Analysis showed that this situation was equivalent to eq. (70), 
thus supporting the lower energy condition. 

In grain boundary theory, it is often assumed that a lattice dislocation entering a bound
ary should dissociate into components with Burgers vectors given by vectors of Bollmann's 
DSC lattice. In the case of a f.c.c. twin, for which the reciprocal fraction of coincidence 
sites, I:.= 3, this implies that a dissociation of type (59a) into a Frank plus a Shockley par
tial, involving no change in elastic energy, should be preferred to one like eq. (70). However, 
the grain boundary theory is not concerned with the compatibility of the slip deformation 
produced by the glide of the dislocations up to the interface; the dissociation of eq. (59) 
obviously does not allow the slip to be propagated past the interface since the Frank partial 
is sessile. Gleiter(261 l has even suggested that in circumstances where there is a large unrelieved 
strain on one side of an interface, existing interface dislocations with DSC vectors might 
amalgamate to form lattice dislocations which can then partly relax the strain. The relation 
between grain boundary theory, especially Bollmann's 0-lattice and DSC lattice descriptions, 

I 

Fig. 44. Electron micrograph showing the interaction of slip dislocations with a thin coherent twin 
boundary in an f.c.c. crystal (after Remyl25"l). 
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and the theories derived from the Sleeswyk and Sax! papers is reviewed in more detail by 
Remy.<zss> 

The edge to edge interaction between the twinning dislocations in the tip of a tapering 
deformation twin which is growing into a dislocation array has been considered by 
Fontaine<262> and Bushnev.<257> The reaction between a lattice dislocation and an individual 
twinning dislocation may take the form of eq. (70), which now represents a 25% reduction 
in energy since it is effectively 

(70c) 

Other possible reactions lead to larger reductions in energy, but again give sessile configur
ations which, if stable against stress, would halt the deformation. Thus eq. (59) can be written 
as the reaction between a lattice dislocation and an opposite Shockley partial to give a Frank 
sessile dislocation (giving an energy reduction of 50%) and a further reduction in elastic 
energy is possible if the Frank partial dissociates into a stair rod of type i<I 10) and a 
Shockley partial in the matrix. It has been suggested that such sessile configurations help to 
prevent untwinning or unloading, but in general they are believed to be unstable against 
pile-up stresses in the edge to edge configuration in the same way as in the planar interface 
interactions. 

Yoo and Wei<263> gave the first analysis of slip-twin interactions in h.c.p. materials. They 
considered the most common {IOT2} twin mode and basal slip in the matrix in a <I 120) 
direction (often called a slip). A basal dislocation with a t<Il20) Burgers vector can 
encounter the {I T02} twin in screw orientation, and may then simply cross-slip on to either 
a prism plane {I TOO} or the basal plane of the twin. This is simply represented as 

I - I --
3<1 120)(0001) = 3<1I20)T(OOOI)T or [ITOO}T· (72) 

However, if the dislocation has one of the other two Burgers vectors of a type, a dissociation 
reaction such as 

(73) 

must take place. However, the dissociation (73) has a product dislocation in the twin which 
is not a lattice dislocation, so that it would trail a stacking fault if it were to glide along the 
{ITOOh plane. This can be avoided if matrix slip dislocation combine in pairs to give the 
dissociation 

(73a) 

where 2b1 is an appropriate zonal twinning dislocation. 
Experimental confirmation of both eq. (72) and eq. (73) was obtained by Tomsett and 

Bevis<252> who made an electron microscopic study of twin-slip interactions in zinc crystals 
which had been deformed in such a way that twinning preceded slip. It is particularly 
noteworthy that the decomposition (73) was confirmed experimentally since this rep
resents a previously unreported slip system which arises directly as a result of the inter
action. Figure 45 is a striking electron micrograph in which dislocations in the matrix 
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Fig. 45. Electron micrograph showing slip transferred from the matrix basal plane (OOOI)m to the (I IOO) 
plane of a (II02) barrier twin in zinc (after Tomsett and Bevis1252l ). 

111 

and the twin are visible at X and Y, and traces of the slip plane in matrix and twin and 
of the twin plane are all clearly visible. Burgers vector analysis confirmed that eq. (73) was 
indeed valid. Later work by the same authors showed, however, that the decomposition is 
influenced by the applied stress. The single crystals used in observations such as those of 
Fig. 45 were orientated so that the slip planes in both matrix and twin were at approxi
mately 45° to the tensile axis, thus maximizing the resolved shear stress on both systems. 
Experiments on polycrystalline specimens showed that a different dissociation leading to the 
formation of basal plane stacking faults within the twin can sometimes occur. Dissociations 
alternative to (74) are represented by 

2 X ~(2 110) = ~(1120)T + [OOOlh - 2bt (74) 

and 

(75) 

The slip planes are not given in these equations, but in eq. (75) both product dislocations 
may, in principle, glide on the basal plane and their Burgers vectors are the h.c.p. equivalent 
of Shockley partials. Equation (75) describes many experimental results when the resolved 
shear stress is much greater on the matrix slip system than on {1 IOOh. The importance of 
the Schmid factor on both primary and twin slip systems was confirmed by the experimental 
investigations of Partridge and PeeJ(253l and Vallance and BevisY54l 

JPMS 39/1·2-H 
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The above reactions all concern the commonest h.c.p. twin, {1012}, but Yoo0811 has also 
examined theoretically interactions with {lOll}, {1122} and {1121} twins. He showed, using 
anisotropic elastic theory, that in zinc and cadmium, non-screw basal plane slip dislocations 
are attracted by the {1012} twin interface, but similar dislocations in the other metals are 
repelled because of the reversal of the twinning shear. 

6.3. Twin-Twin Interactions 

An existing deformation or annealing twin in the path of a growing deformation twin is 
an obstacle which may be difficult to overcome. Very often, however, the growing twin 
manages to force some or all of its shear strain into, across and beyond the obstacle twin. 
In (R.W.) Cahn's classical paper(SO) on twinning in uranium, he stated two restrictive 
conditions which, if satisfied, will allow a deformation twin (A) to cross another twin (B) by 
creation of a secondary twin (C) in the crossed region. These well-known conditions are 
(I) the K1 planes of A and C must intersect that of B in the same direction and (2) the 
direction q1 and the magnitude and sense of shear in A and C must be the same. The first 
condition corresponds to the geometrical condition for the propagation of slip; the 
second ensures complete shear compatibility, and later work has shown that it may be 
partly relaxed if some accommodation by slip is also involved. However, twin propagation 
by secondary twinning is frequently impossible because of the directionality of the twin
ning shear, a complication which does not occur with slip. Sleeswyk's theory of emissary 
slip first provided an explanation of the crossing of obstacle twins by internal slip rather than 
twinning in b.c.c. materials, and the theory of inter-conversion of twinning and slip dis
locations has since been generalized to account for some twin-twin intersections in other 
structures. 

The simplest way in which the crystallography can conform to Cahn's condition occurs if 
the shear direction of A and C is parallel to their mutual line of intersection with B so that 
there is no displacement of B normal to its K1 plane. The twinning dislocations of A meet 
the interface of B in screw orientation so that they can simply cross-slip into B on the K1 

interface between B and C. This is thus the equivalent of the simple cross-slip case in the 
propagation of slip. Liu(264> pointed out another possible geometry in which the K1 planes of 
A and C are parallel, so that the crossing twin A is undeviated but the A-B interface plane 
is inclined to the matrix-B interface. This tilting is the net effect of the steps left in the 
matrix-B interface by successive twinning dislocations of the matrix-A interface. Liu's 
hypothesis of parallel K1 planes and q1 directions is, however, not generally compatible with 
the crystallography of twinning, and Cahn's cross-slip case is applicable only to b.c.c. and 
derived structures. 

Complete propagation of a twinning shear across a barrier twin by secondary twinning is 
usually impossible if the only twins are crystallographically equivalent variants of one mode. 
It may appear that in cubic compound modes in which K1 and K2 are equivalent variants, 
these two planes could be the K1 interfaces of the matrix with the A and B twins, and the 
reflection of the A-matrix interface in the B-matrix interface would then necessarily be 
(within the twin B) another variant of the same type of plane. However, an analysis by 
Levasseur(26~1 and later by Remy<2661 shows that the direction of shear which will twin B on 
this plane has a component normal to the matrix-B interface which is opposite to the 
component of the twinning direction of A, i.e. the shear produced in the barrier twin would 
be an anti-twinning rather than a twinning shear. 
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The b.c.c. structure has the unique feature that three { 112} type twins may intersect along 
a common < 11 1) direction, which is moreover the only possible q1 direction for all three. This 
configuration is thus the simplest type of twin- twin interaction. Twinning dislocations in 
screw orientation on one such plane meeting a barrier twin can, in principle cross-slip on to 
the interface plane of the barrier twin or on to either of the two { 112} planes within the barrier 
twin. If they form emissary dislocations, they can accommodate the shear of the incident twin 
by emissary slip on these planes or on any of the three { 101} planes in the same zone. The 
two {112} planes within the barrier twin are respectively the mirror image of the interface 
between the intersecting twin and the matrix and the plane parallel to their original interface 
plane. 

Such interactions in a-iron were investigated experimentally by Sleeswyk and Helle<267J and 
Levasseur,<265J and in a Mo-35at%Re alloy by Mahajan.<256J Figure 46 shows two (TI2) twins, 
7A and 7B, interacting with a (121) twin, 12, in a-iron. It is apparent that 7A and 12 cross 
each other completely, but the 7B-12 interaction is such that the growing twin appears to 
end at, or merge into, the obstacle twin. Figure 47 shows a similar interaction in the Mo-Re 
alloy in which (121) and (211) twins, T 1 and T2 , merge into each other with little or no 
deformation of the surrounding matrix. In these 'branching' interactions, it may be seen that 
both twins cease to widen on the side of the intersection which encloses an obtuse angle, but 
continue to widen on the side enclosing an acute angle. This effect is another consequence 
of the unidirectionality of the twinning shear. If the positive direction of shear is taken as 
[Ill] for both T 1 and T2 , for example, it follows that the positive plane normals must be [T21] 
and [2TI], i.e. the positive normals must enclose an obtuse angle. Consider a (hypothetical) 
single twinning dislocation, gliding on the (2Tl) plane until it reaches the barrier interface 
(121). Instead of crossing the interface, it may cross-slip along it, thus adding an additional 
layer to part ofT1 • The direction of this motion is necessarily that which makes an acute angle 
with the (211) matrix plane. A series of such twinning dislocations on successive (211) planes 

SPECIMEN 
AXIS 

Fig. 46. Micrograph obtained from the surface of an IX-Fe specimen after 9.2% deformation in liquid 
oxygen. Twins 7A and 12 crossed each other completely during the early stage of deformation. Later 
transverse growth took place only on those sides of the crossing twins which enclose an acute angle. 

The twin crossing 7B-12 is a branching crossing (after Sleeswyk and Helle(2671 ) . 
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25 
Fig. 47. A ( 111 ) twin intersection observed in a deformed Mo- 35at%Re alloy specimen (after 

Mahajan<256l ). 

will lead to the formation of a twin T 2 , and both twins can continue to thicken in this way 
as a consequence of the compatibility of the atom movements in the acute angle. In the obtuse 
angle, thickening of T 1 is not compatible with that of T2 • 

In Fig. 46, the crossing of the twins 7 A and 12 is apparently achieved by emissary slip, 
i.e. by conversion of the twinning partials of the crossing twin in threes to form slip 
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dislocations which glide through the crossed twin and then dissociate again in order to 
continue as a twin on the other side. Sleeswyk and Helle apparently assumed that the slip 
plane in the twin would be parallel to the composition plane of the crossing twin, since it 
is also a {112} plane, but as is often the case, it was not possible to determine the slip 
plane experimentally; indeed, it is frequently not evident from optical or even electron 

2o 

Fig. 48. A <I02) twin intersection observed in a deformed Mo-35at%Re alloy sample (after 
Mahajan(256l). 
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micrographs which twin is the crossing twin. Levasseur<265l also observed branching inter
actions from ( 11 I) intersections but in addition, he and Kounicky<268l have found evidence 
for "detwinning" on a plane not parallel to the K1 plane of the incident twin. 

As already noted for the slip-twin interactions, there are several crystallographically 
distinct intersections between the { 112} planes, and examples of each configuration have been 
examined experimentally. Figure 48 shows a (210) type intersection in which the barrier twin 
(TJ is (2ll) and the crossing twin is (211) so that the twins intersect along [102]. Mahajan 
found the slip plane to be (10,1 ,5) of the matrix, which is equivalent to (23lh of the barrier 
twin. If the formation of emissary dislocations is assumed, the crystallography is identical 
with that already discussed for the corresponding interaction of a (211) slip band with a (2ll) 
twin (see eqs (68) and (68a)). This result was later confirmed by Levasseur(265l who also 
observed that some of the HI llh dislocations cross-slipped on to a (liOh slip plane within 
the crossed twin. As already mentioned, the observed (231h plane is that one of the possible 
atomic b.c.c. glide planes which makes the smallest angle with the K1 plane of the crossing 
twin, and is thus likely to carry a high resolved shear stress; it also requires a smaller increase 
in line energy than either of the rival dissociations (69) and (70). The choice of the slip system 

Fig. 49. A ( 110) twin intersection observed in a deformed Mo- 35at% Re alloy sample (after 
Mahajan<256l ). 
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(lll)T{231h thus correlates well with either a maximum driving force (applied stress) or a 
minimum energy criterion. However, Mahajan also found some small regions of the matrix 
containing dislocations with Burgers vectors !Oil) on slip planes {231 }. These dislocations 
may be explained formally by a different dissociation of the incident twinning or emissary 
dislocations as in eqs (69) and (69a). If this is the source of the experimental observation, 
it implies that transmission of the shear is incomplete. Moreover, the formation of some 
product dislocations in the matrix causes considerable difficulties. 

An experimental investigation of twin intersection along a ( 110) direction is illustrated in 
Fig. 49. The twins T5 and T6 , on (211) and (211) planes, respectively, intersect along [01 I], 
and slip bands S1 and S2 are also observed. The plane of S1 is (011), so that the two possible 
slip directions are [111] and [Ill]. The trace analysis gives four possibilities, (211), (213), 
(213) and (211), for the plane of S2 • These results are again consistent with the dissociations 
of the emissary dislocations with Burgers vector Hill] formed from three twinning 
dislocations of the (211) twin. However, it seems unnecessary to include the intermediate 
formation and dissociation of the emissary dislocations, which may well be an entirely 
notional rather than a physical process. The two proposed decompositions may then be 
written more directly as: 

(76) 

where (with a type IV orientation relation to define the axes (T) of T3), 

(76a) 

and 

(77) 

where 

(77a) 

The S1 slip bands are produced when the HI II] and/or the HI 1 I] dislocations glide on the 
(011) planes of the matrix away from the line of intersection at which they were formed. Slip 

is propagated across T5 on the (011h plane, and a twinning dislocation of the T5 plane glides 
away along the (211) T5-matrix interface. The S2 slip bands could be formed as a conse
quence of the decomposition of the Burgers vectors [lSI]= [lilh and/or HI IS]= [11Th at 
the emergent surface to give a rewritten eq. (77) with: 

(76b) 

and there is a corresponding eq. (77b). In principle, the Hill] dislocations could each reform 
as three twinning dislocations, and the twin T5 would then appear to have crossed T6 in a 
similar fashion to that shown in Fig. 48. However, in this example, S2 slip bands apparently 
form in preference to the reconstituted twin; it is not known whether or not the two results 
are characteristic of the usual situation at (210) and (110) intersections, respectively, or 
whether they just represent alternative possibilities in each case. 

The above description implies that the S2 slip bands are on (211) with a Hill] Burgers 
vector; thus they represent the ultimate emissary dislocations to emerge from the crossing. 
However, the absence of the S1 type of band on the exit side of T5 , together with some 
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experimental evidence of more than one Burgers vector in the bands, led Mahajan to suggest 
that the !(II I] and/or the ![HI] dislocations do not all remain in the (011) plane, but may 
cross-slip onto the (213) and (2ll) planes, respectively, both of which could form part of the 
s2 slip bands. 

An alternative to the (Ollh slip plane for the propagation of the twinning shear of T6 
into the barrier twin T5 is the (211h plane. This implies, in place of eqs (76) or (77), the 
dissociation: 

I I I-3 X (;(111Jc211) = (;(511](233) + :J(lllbllJ (78) 

where 

(78a) 

Mahajan suggested that this reaction may be more probable than (76) and (77) because it 
requires less energy. The slip plane in the twin unfortunately could not be determined from 
the experimental data. 

In iron crystals deformed at liquid nitrogen temperature, Levasseur observed that 
microcracks sometimes form at (011) type twin intersections. He attributed this to a different 
dissociation which leads to the formation of a (IOO)T dislocation in the barrier twin. 

Similar dissociations have been proposed for (311) intersections<265l and for < 531) inter
sections<265·256l and have been partly confirmed by experiment, although it was not always 
possible to determine the slip plane in the twin. In the (311) intersections, Levasseur found 
one mechanism involving induced slip on the {Ollh plane but experimental evidence again 
suggested that some of the lattice dislocations cross-slipped within the barrier twin from 
this plane to a {TI2} plane. For the (531) intersections, Levasseur distinguished two cases, 
depending on whether or not the shear direction of the intersecting twin was that of the 
conjugate mode of the barrier twin. If it is not, slip may be conveyed across the barrier twin 
on a (231 )T type plane; this prediction is consistent with the experimental results, but the 
slip plane could not be identified in the experiments. If the '1 1 direction of the incident twin 
equals '12 of the barrier twin, Levasseur concluded that crossing of the two could not be 
accomplished. Mahajan studied experimentally the intersection of a (211) twin by a (l21) twin 
and found that the shear was transmitted by slip in the (211) twin. The most probable slip 
plane was deduced to be (11 ,2, 1) = ( 132h, in agreement with the prediction of Levasseur, but 
this could not be verified. A few dislocations with HI 11] Burgers vector were also observed, 
but it is not known how or why they formed. 

In f.c.c. and related structures, the {Ill} twinning planes intersect only in <II 0) directions 
so there is no twinning equivalent to the cross-slip of screw dislocations across the twin-matrix 
interface. The twinning dislocations of a growing deformation twin meet the K1 interface of 
a barrier twin either in pure edge configuration or with Burgers vectors at equivalent angles 
+ 30° or - 30° to their < 110) line direction. In the edge configuration, sometimes termed case 
I, an intersecting twinning dislocation would create a step of a height equal to two-thirds of 
the {Ill} interplanar spacing in the K1 interface of the barrier twin, so that groups of at least 
three such twinning dislocations are required to give steps with heights which are integral 
multiples of 2d111 • In terms of the double tetrahedron of Fig. 43 in which the barrier twin 
is on the plane d, a growing twin on plane c would have a case I intersection if its shear ('11) 

direction were yD. The (case II) 30° twinning dislocations y A or y B would produce steps of 
height d/3, so that again groups of three or more are necessary to obtain steps with heights 
which, in this case, are integral multiples of the unit height, d111 • 
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The motion of any one of the three twinning dislocations in a {Ill} plane of the barrier 
twin other than the composition plane (din Fig. 43) produces a secondary (or subsidiary) 
twin with the same orientation in all three cases. Each of the three possible twinning 
dislocations in the barrier twin-matrix interface, in principle, returns the barrier twin to the 
matrix orientation, i.e. they represent detwinning shears. However, if the barrier twin is a 
deformation twin, full cancellation of its associated shear strain can occur only by the motion 
of the appropriate barrier twinning dislocation (e.g. ~'C' if the original twinning dislocations 
were ~C). In other cases, residual dislocations may form by reaction of the detwinning 
dislocations (~'A' or ~'B') with any remaining twinning dislocations ~C. 

For a type I intersection, several mechanisms have been suggested in which the accommo
dation shear takes place on the plane of the barrier twin which is the mirror image of the 
K1 plane of the intersecting twin; this is the K2 plane of a possible barrier twin produced by 
deformation. Mahajan and Chin(259> considered two basic decompositions of three incident 
edge twinning dislocations on plane c =(III) which encounter a barrier twin on plane 
d =(Ill). In terms of Fig. 43, these decompositions may be written: 

3 X ')'D(c) = 3 X D'y'(c') + 2 X ~'C'(d') 

and 

3 X ')'D(c) = 3 X B'y'(c') + C'~'(d') + 3 X AD(c) 

or in vector form: 

3 x HI I2]0 rl> = Hs52lrl3> + 2 x HI12](l11> 

with (for a type IV orientation relation) 

I -- I I"i 6[552](TI3> = 3 x 6[1 "-hor1h 

and 

with 

(79) 

(80) 

(79a) 

(79b) 

(80a) 

I I --6[271lm) = 3 X 6[211h(ITI)T· (80b) 

There is a third possible dissociation of three}' D dislocations but this is just a crystallograph
ically equivalent variant of eq. (80). The only product dislocations of eq. (79) are within the 
barrier twin and in the barrier twin-matrix interface; note that the latter may be written 
equivalently as either ~C(dl or as ~'C'(d'l. Equation (79) describes a dissociation which allows, 
in principle, full transmission of the twinning shear, whilst eq. (80) represents only part 
transmission. The large Burgers vector AD left on every lattice c plane of the matrix would 
actually reverse the shear strain due to the incident twin if the dislocations moved back along 
their slip plane. Clearly, this is impossible if the incident twin is driven by the applied stress, 
but, as mentioned in relation to eqs (68) and (69), calculations of the stress field of the piled
up twinning dislocations(262> indicate that some limited reverse slip may be driven by the 
pile-up stresses. Such accommodation slip will presumably cease as a reverse pile-up of the 
AD dislocations begins to form. Continued deformation then requires increasing numbers of 
dislocations in the primary pile-up, and hence increasing applied stress, thus producing 
work-hardening. The alternative assumption that the matrix dislocations remain in the 
interface raises many difficulties. 
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At first sight, both eqs (79) and (80) are able to convert the three incident twinning 
dislocations into three Shockley partials on the (I I 1 h plane of the twin, and thus propagate 
the twin by formation of a secondary twin. However, the Shockley partials D'y' and B'y' are 
actually anti-twinning dislocations,<266l as shown in the general treatment above. Mahajan and 
Chin<269l suggested that the resulting A-A stacking could be avoided by dissociation of the 
anti-twinning dislocation into two twinning dislocations with Burgers vectors at ± 60° to that 
of the anti-twinning dislocation. However, this hypothetical dissociation, e.g. 

D'y' = y' A'+ y'B' (81) 

or 

i(552] = i(72I] + H27I] (8la) 

would not only further increase the already appreciable line energy, but would also result in 
two Shockleys to each lattice (l I 1 h plane. Thus the two component displacements would 
have to take place consecutively on the same plane, and this would negate any advantage 
which might otherwise be obtained from the dissociation; in particular, the A-A stacking 
could not be avoided. A possible mechanism involving secondary twinning is obtained from 
a dissociation in which only one of the two favourably oriented twinning dislocations on the 
( 1 I 1 h plane is produced, but this dissociation (described below) is also difficult to envisage. 

Alternative dissociations which have been proposed include 

3 X ')' D(c) = D' A'(c') + D'B'(c') + 2 X o'C'(d') (82) 

or in vector form 

I -- I -- I -- I - -3 X r;[ll2](1TI) = r;[4llh;) + 6(14l)al)) + 2 X r;[l12lTII) (82a) 

with 

I -- I -- I -- I -
r;[41l](TI)) = z[0ll)rpy 1)T and 6(141lTI5) = z[l01hoTI)r (82b) 

and 

3 X ')'D(c) = D'C'(c') + tJC'(d') + AD(c) (83) 

i.e. 

I -- I -- I - - I --3 X ;;(112]0 TI) = r;[41lh;) + r;(ll2](TII) + 2(011](1TI)· (83a) 

Dissociation (83) and an equivalent variant, first suggested by Mahajan and Chin, (259l involves 
slip in the twin and also in the matrix, whereas the slip of equation (82) suggested by Remy,<266l 

is confined to the twin. Thus eq. (82) gives full shear transmission by slip but eq. (83) does 
not. Note that eq. (82) may be derived from eq. (80) by the substitution 

3 X D'y' = D' A'+ D'B' (84) 

in place of eq. (81). The required anti-twinning shear is thus obtained from the motion of 
the two perfect dislocations on every three c' planes of the barrier twin. 

The interaction is shown(270l schematically in Fig. 50; the obstacle twin has a lattice which 
is continuous through the intersection region and is undeviated, whilst the lattice of the 
intersecting twin is discontinuous and its two parts are displaced from each other. The 
matrix dislocation AD of eq. (83) causes similar difficulties to those discussed above in 
connection with eq. (80); if these dislocations move back along the slip plane (c), they must 
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Fig. 50. Schematic illustration of twin intersection in an L1 0 structure. The detwinning shear removes 
the steps in the barrier twin (b). In the final structure the crossed twin appears undeflected and is 

continuous across the intersection (c) (after Sun et a/.<271 1). 

do so against the applied stress; alternatively, they will block the shear transmission and lead 
to high stress concentrations if they remain in the interface between the matrix and the barrier 
twin. 

Remy<266> has suggested a dissociation which is designed to allow the formation of a 
secondary twin. The reaction is 

(85) 

which is equivalent to 

(85a) 

with 

I --- I -
6[27llm> = 3 x c;[2llhori>T· (85b) 

There is thus one y'B' dislocation on each c' plane, and glide of these partial dislocations 
across the barrier twin will produce a secondary (or subsidiary) twin. Once again, however, 
the continuity of the shear is not complete because of the matrix dislocations left at the barrier 
interface. 

Instead of secondary twinning of the barrier twin accompanied by reverse shear in the 
matrix, the possibility of combining slip in the barrier twin with (reverse) twinning of the 
matrix has also been considered. The following dissociation was first suggested by Mahajan 
and Chin<259> who identified it, mistakenly, with a similar dissociation proposed previously 
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by Mahajan et a/.003> as an interpretation of experimental results. A variant of the 
dissociation is: 

(86) 

which is 

(86a) 

with 

(86b) 

and there is an equivalent variant which leaves a yA = i[l21] partial in the matrix and 
produces slip dislocations D'B' = HlOTh to carry the shear across the barrier twin. These two 
equations are listed by Remy<260l together with two other similar "mixed" dissociations of 3y D 
in which the product combinations of twin slip and matrix twinning dislocations are 
interchanged. 

The reaction (86) clearly does not accomplish full shear transmission, and the diffi
culties now centre on the twinning dislocations with Burgers vector ')' B left in the matrix. 
If these move away from the interface on plane c under the effective stress of the pile
up, they will detwin the incident twin. The detwinning shear direction is at 60° to the 
twinning direction of the incident twin, so that about one-half of its shear strain is effectively 
cancelled. 

The increases in line energy are even higher in mechanisms involving secondary twinning 
than in those which depend entirely on slip. The Frank rule estimate<258l gives an energy 
increase of about 133% and 167% of the initial line energy for slip mechanisms (83) and (82), 
respectively, and about 233% and 400% for secondary twinning (eq. (85)) and detwinning 
(eq. (86)), respectively. These figures depend on the assumption that the initial state can be 
taken as well separated single twinning dislocations. Smaller energy increases (17, 33, 117 and 
250%, respectively) are obtained for an initial state consisting of emissary dislocations with 
Burgers vector AD + BD instead of 3y D, but this scarcely seems physically realistic. As 
already remarked, these high energies can only be overcome if appreciable stress concen
trations are formed at the head of the incoming slip or twinning dislocations. However, the 
energy classification gives some indication that accommodation of the incident twinning shear 
is likely to involve slip rather than secondary twinning. 

The above mechanisms all concern case I intersections in which the f.c.c. twinning 
dislocations meet the K1 interface in edge orientation. Very little work, either theoretical 
or e" i~erimental, on case II intersections appears to have been published, apart from an 
early paper by Mahajan et a/.003> who investigated the propagation of a thin deformation 
twin through a thick annealing twin interface in irradiated copper. Some work on case II 
intersections in superlattice (Ll 0 ) structures based on f.c.c., has been published recently and 
is discussed below, but the available experimental results on f.c.c. intersections are first 
summarized. Despite a few very careful experiments, it has not been possible to decide the 
operative mechanism in most individual cases. 

Remy<258> reviewed work on f.c.c. structures including his own investigations of twin-twin 
interactions in cobalt based alloys and in a manganese-chromium steel. He used poly
crystalline specimens and concluded in all cases that accommodation was entirely by slip. 
On the other hand, Mahajan and Chin,<243•259> working with single crystals of Co-8wt%Fe, 
which had been given a constrained, plane-strain deformation, found examples of shear 
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propagation by both slip and secondary twinning, with the latter dominating. Figure 51 taken 
from this work shows an example of slip propagation, and Fig. 52 shows secondary 
twinning. At high magnifications, very complex structures were observed in conjunction 
with secondary twinning. As shown in Fig. 53, the matrix is heavily twinned on (Il I) planes, 
marked T 1 on the micrograph, and the contrast shows that a secondary twin has formed 
in the barrier twin (T2 ) with a habit plane identified as (1I5)=(Illh. The microstructure 
also contains (i) some triangular-shaped, striated regions, contiguous to the secondary 
twins, and (ii) some very small twins within T 1 • The striated areas occur mainly on one, but 
occasionally on both, sides of the secondary twins. These regions may also be subsidiary 
twins, but the way in which the complex structure has evolved is not known. The choice of 
accommodation by slip or secondary twinning is probably very dependent both on the ratio 
of the resolved shear stresses at which slip and twinning can be initiated and on the complex 
local stresses. 

In their investigation of irradiated copper, Mahajan et a/.<103> studied the penetration of 
the (II I) interface of an annealing twin by a thin deformation twin with K1 = (I II ) and 
q1 = [I 12]. They interpreted their results in terms of a dissociation into a perfect dislocation 
in the barrier twin and a twinning dislocation in the matrix. Transferring to a variant in which 
the barrier twin is again d ={Ill } and the plane of the incident twin is c, this dissociation 
may be written: 

Fig. 51 . Optical micrograph illustrating the features of twin-twin intersection involving slip in the cross 
twin and slip- twin interactions observed in a deformed Co-8wt%Fe alloy single crystal. The plane 

of the micrograph is (110) (after Mahajan and Chinl259l ) . 

(87) 
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Fig. 52. (a) Micrograph showing twin-twin and slip-twin interactions in a deformed Co--8wt%Fe alloy 
single crystal. When T1 propagates through an existing slip trace MN, it is sheared into MN'. (b) 
Single-surface trace analysis of the observed traces. (c) Schematic diagram of the twin intersection 

showing the imposed shear stress pattern (after Mahajan and Chin<259l). 

I - I 
6(411](115) = 2(01lhTI}r · 

b 

(87a) 

(87b) 

Although eq. (87) resembles eq. (86), the two dissociations are not equivalent since the 
incident twinning dislocations meet the barrier interface in edge orientation in eq. (86) and 
in 30° orientation in eq. (87). The dissociation (87) is thus a class II reaction, as pointed out 
by Sun et a/.<270) Mahajan et a/. suggested that the new twinning dislocations in the matrix 
will produce a new twin within the incident twin; in fact, this new twin represents detwinning 
of the incident twin to the matrix orientation. 
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Fig. 53. Twin interactions observed in a Co- 8wt%Fe alloy single crystal. The plane of the micro
graph in each case is -(110). Micrographs (b), (c) and (d) show dark-field of the matrix, T1 'sand 
secondary twins, respectively. The traces of (Tl T), (T 11) and ( 1 L5) planes in the ( 11 0) plane are 
identified by CD, EF and GH, respectively. SM refers to the twinned region in the matrix that 
may have undergone a shear reverse to that of T2 's. The marker represents one micron (after 

Mahajan and Chin<243l). 

125 

In a very recent investigation, Miillner et a/.<272) studied twin intersection in austenitic steel 
of low stacking fault energy, under conditions in which twinning is the dominant mode of 
deformation. They discuss their results in terms of the disclination model of a twin, described 
above, which they also assume applies to a moving twin. In their analysis (Fig. 54), two 
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Fig. 54. Separated transformations of twin intersections: (a---+ b) rotation of -38.94°, (b---+ c) 
pseudo-shear of ,J2/2. Asymmetrical ~9 boundary between the intersecting twins (after Miillner 

et a/. 1272' ). 

different kinds of motion of a disclination dipole are considered. In the simplest case, the 
incomplete dislocation wall migrates normal to itself, and in the other case pairs of oppositely 
signed dislocations move from the plane midway between the dipole arms out to the two 
limiting planes. The first kind of motion is representative of the intersecting twin before and 
after crossing the barrier twin, whereas the second kind represents motion along the { 111} 
plane of the barrier twin which forms the mirror image in its K1 plane of the K, plane of the 
intersecting twin. As a result of these (simultaneous) processes, the intersected volume 
undergoes a combined rotation and a pseudo-shear, so called because it is a lattice invariant 
deformation equivalent to the displacement of lattice dislocations and so does not change the 
crystal orientation. This pseudo shear takes place on the anti-twinning system Dy1,l of eq. (80), 
the rotation is 38.94° about the normal to the {110} plane of shear, and the pseudo-shear 
of magnitude (2)-! restores the K,-barrier twin interface plane back to its original orientation, 
but does not change the rotated lattice. Thus the predicted morphology (Fig. 54d) has an 
undeviated incident twin which traverses the barrier twin without any change of orientation, 
and a deviated barrier twin with an interrupted lattice in the intersected region. Other 
mechanisms which lead to one deviated and one undeviated twin include the dissociations 
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(79) and (82), and the undeviated slip on {Tl:S}T, but combined observation of whether one 
or both twins had reorientated habit planes and/or reorientated lattices should discriminate 
among the various possibilities. 

Some experimental results on an austenitic steel are claimed by the authors to support 
slightly modified versions of this theoretical description. In one experimental condition, a 
number of small secondary twins were found in the barrier twin, and it is assumed that these 
must move to the boundary of the intersection volume to allow penetration to take place. 
The experiments showed that the intersected volume had the same orientation as the 
intersecting twin, as predicted by the above theory. In another observed configuration, the 
intersecting twin was not a single crystal but a 'twin system' consisting of several small twins 
with an overall shear smaller than the twinning shear of 2 -t. This implies a reduction in the 
rotation of the intersected volume relative to the matrix, so that its final orientation is between 
the orientations of the barrier and incident twins, and may be predicted if the shear of the 
imperfect incident twin or twinning system is known. The experimental results for this case 
showed indeed that the intersected volume had an intermediate orientation, and the measured 
rotation agreed reasonably well with the predicted value. 

There has been much interest in recent years in the mechanical properties of intermetallic 
superlattice compounds of aluminium, titanium and nickel and Yamaguchi and Umakoshi<273> 

have recently published a comprehensive review. The mechanical behaviour, and especially 
the temperature dependence of the stress, is often unusual and attention has focussed mainly 
on attempts to explain it in terms of dislocation properties in superlattices, but there have 
also been several recent investigations of twinning.(27°·271 •274-278> Since the various structures 
may all be regarded as derived from f.c.c. structures by some form of long-range ordering, 
the number of true twin modes which correspond directly to f.c.c. modes is zero in cubic 
superlattice structures and is severely restricted in non-cubic structures, as discussed in 
Section 2.6. Nevertheless, twinning is an important mode of deformation in superlattices 
such as TiAl with the tetragonal Ll 0 structure since the number of available slip systems is 
similarly restricted. 

The double tetrahedron of Fig. 43 may also be used to discuss twinning in Ll 0 , but there 
is now only one i<II2] twinning vector to each {111} plane. If the twinning direction of the 
barrier twin is again taken as yD, eq. (79) may be applied directly to the Ll 0 structure, but 
eq. (80) is not valid since B'y' is a vector of type i<I21] which produces a complex fault, 
thought to be of high energy. Equations (83) and (84) may also be extended to the superlattice 
structure, but since two dislocations such as D' A' or D'B' are needed to form a perfect 
dislocation of the superlattice, the dissociations have now to be written: 

6 X yD(c) = 20' A'(c') + 2D'B'(c') + 4 X t5'C'(d') (83d) 

and 

6 X j' D(c) = 20' A'(c') + 2t5'C'(d') + 2AD(c). (84d) 

Figure 50 shows the dissociation of six elementary twinning dislocations, and thus applies 
to eq. (83d) as well as to (83). 

None of these proposed dissociations is compatible with the latest experimental evidence 
for TiAl which shows that one twin is undeflected but the lattice is continuous through the 
deflected twin. Wardle<276> suggested that slip in the barrier twin might take place on the (001) 
plane rather than on the usual {Ill} plane. This is not generally considered possible in f.c.c. 
structures, but may well be feasible at fairly high temperatures in Ll 0 structures, and there 
JPMS 3911·2-1 
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is some recent experimental evidence in support of this hypothesis. Wardle suggested two 
dissociations involving (OOlh slip, one giving full shear transmission and one giving part 
transmission. The latter is nevertheless more probable because of the difficulty of avoiding 
A-A stacking with the full transmission. Wardle's dissociation is: 

(88) 

or in vector form 

I -- I -- I -
6 x 6[112]0n) = 3 x 6[114lmn + z-[llOloon (88a) 

with 

(88b) 

The displacements 3D'C' and CD take place every six atomic (001) planes. Since they form 
along the direction AB = [110], they are both initially edge dislocations and could become 
immobile at low temperatures by forming a Lomer-Cottrell lock. 

In addition to shear transmission on {111} and (001) planes, experimental results on twin 
intersections in TiAl have necessitated the consideration of "undeflected" slip, i.e. slip on 
the plane and direction of the barrier twin which are parallel respectively to the K1 plane and 
'II direction of the incident twin. Except for the special case of (Ill) slip-twin and twin-twin 
intersections in b.c.c. structures, where the undeflected plane is a usual {112} slip or twin
ning plane, undeflected transmission of the shear has generally been neglected because of the 
difficulty in envisaging atomic slip on high-index planes and in high-index directions. 
Nevertheless the geometrical constraints are sometimes able to force the system to adopt an 
unusual, undeflected slip system inside a barrier twin, as first noted for zinc by Tomsett and 
BevisY52) The first indication of undeviated shear in f.c.c.-derived materials came in the work 
of Pirouz et a/.0 73- 175·279) and Dahmen et a/.(280) on silicon and other materials with the diamond 
cubic structure. The undeviated shear is closely related in the two cases, but produces a 
different final structure (see below). In the Ll 0 structure, the undeflected twinning dislocation 
becomes a new vector given by: 

(89) 

If the shear is transmitted homogeneously, there is a zonal displacement of this magni
tude every third (liS) plane. However, this would produce A-A stacking of the (lllh planes 
(see Fig. 55), and even if the shear is accompanied by atomic shuffles, these are all likely to 
require that atoms pass each other at distances corresponding to the small A-A separation. 
The uniform shear may, in principle, be converted into a lattice-preserving slip shear if a 
lattice dislocation of type H552] is formed on every 27 (115) planes. Although the large 
magnitude of the Burgers vector (nine times that of an elementary twinning dislocation) 
implies that a very large stress concentration will be needed to produce this slip, there is 
nevertheless some good experimental evidence that it is the operative mechanism in TiAl at 
relatively low temperatures. 

As mentioned above, the undeflected mechanism in TiAl is essentially identical with 
twin-twin interactions in elemental diamond cubic materials and in compounds which are 
ordered versions of the diamond cubic structure. Twin intersections and secondary twin
ning in such structures have been investigated in detail by Pirouz and coworkers using 
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high resolution electron microscopy. They found good evidence for undeftected transmission 
which in this case, however, results not in emissary slip on the (liS) plane but in the forma
tion of a new crystal structure, the diamond-hexagonal structure. A possible reason for 
this is that A-A stacking, or rather shuffles which require atoms to pass at A-A separ
ations, whilst inconceivable in f.c.c. structures might not be so energetically unfavourable 
in diamond cubic and related structures in which the closest interatomic distance (some
times described as the length of the covalent bond) is appreciably shorter than the smallest 
lattice vector. 

Figure 55c shows that uniform shear on the (115) plane produces the A-A stacking, but 
Dahmen et a[.<280l suggested that this could be avoided if the shear were combined with atomic 
shuffles to change the A-A stacking to the hexagonal-type A-B stacking. The formation of 
the diamond hexagonal phase with stacking of type .. . Aa B{J . .. has been observed by lat
tice resolution electron microscopy in twin-twin intersections in silicon and germanium 
(see Fig. 55), and has also been found in the matrix phase of silicon. This latter observation 
is believed to result from secondary twinning inside previously formed twins, and its 
subsequent propagation out into the matrix. 

Structural changes in twin intersections have not been observed either in pure f.c.c. 
metals or in ordered compounds. One reason is the stacking difficulty already mentioned, 
but also in a tetragonal phase such as TiAl, the structure following the shuffles would be 
(approximately) orthorhombic, or (more strictly) monoclinic. 
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Fig. 55. (a) Schematic illustration showing the structural changes associated with the undeflected 
penetration. (b) The shear of the incident twin (TI) is M:S32]' on plane (liS)' and it transforms the 
trace of (001)' OP to OP' which is normal to the trace of (lll)n. (c) Arrangement of atoms around 
an undeflected intersection in which ... AAA ... stacking occurs on plane (lll)n; open and solid circles 
represent respectively Ti and AI atoms which lie on adjacent (I TO) planes. (d) Unit cell of an 

orthorhombic structure of the ... ABAB ... stacking (after Sun et a/(17°1). 
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Wardle et a/.<276•278> also considered class II intersections in TiAl in terms of penetration on 
octahedral planes and they suggested the following two dissociations 

3 X /JA(b) = 3 X fJ' A'w> + 2DC(b) + 2C'6'(w') (90) 

and 

(91) 

where CD/AB means a vector which is twice that joining the mid-points of CD and AB. In 
vector form, these equations are 

(90a) 

with 

(90b) 

and 

(9la) 

Both of these proposed dissociations give incomplete shear transmission and leave 
dislocations with Burgers vector DC normal to the shear direction of the incident twin which 
must move back into the matrix along the twin interface. This effectively fully reverses the 
component of the twinning shear normal to the intersection line in the mechanism of eq. (90) 
and partly cancels it in the mechanism of eq. (91), but the displacement parallel to this line 
is increased. Sun et a/.<270> give various reasons why these dissociations will probably not 
operate in practice, especially the inability, in normal circumstances, of the pile-up stresses 
to drive the new matrix dislocation with Burgers vector DC away from the line of intersection. 

Four further dissociations suggested by Sun et al. are: 

and 

or equivalently 

3 X fJ A( b) = C' b '(d') + C'D'(b') + B' A'(d') 

3 x fJ A<h> = 2 x C' A'w> + DC<h> 

3 x fJA<h> = 3 x fJ' A'w> + C'D'w> + DC<h> 

3 x fJA<h> = 3 x fJ' A'w> + 3 x C'D'w>4 + 2x6'C'<d'J 

I I - I- I 3 x 6[112] 11 r> = 6[112lr 11> + 6[114ln1> + 2[110lr 11> 

3 x HI 12]0 n> = [10ll 11n + HT10]01 r> 

(92) 

(93) 

(94) 

(95) 

(92a) 

(93a) 

(94a) 

(95a) 

These mechanisms are all geometrically and crystallographically possible but all have 
associated physical difficulties, especially with incomplete shear transmission. They fail to 
agree with the experimental results in various ways. A further suggested dissociation 

9 X fJ A(h) = 3 X C'D'(h') + 2 X C' A'(h') + 28' A'(d') (96) 
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which produces accommodation entirely by slip in the barrier twin is considered by Sun 
et a/.(270•271 l more probable than any of the above, except that the dislocation 2C' A' is a pure 
screw superdislocation as it crosses the interface and may thus be locked in Ll 0 alloys. This 
suggests that the shear may instead utilize one of the twinning partials, so that eq. (97) is 
further modified to 

9 X fJA(b) = 3 X fJ' A'(b') + 4 X C'D'(b') + 2 X B' A'(d') 

which in vector form is 

(97) 

(97a) 

This dissociation now has the disadvantage that the three twinning partials of type fl' A' have 
to be distributed over nine planes, so if they are evenly spaced, they will create a large number 
of stacking faults. However, if they cluster together in groups on successive planes, each such 
group will be converted into a secondary twin of the barrier twin. One-third of the total 
volume will be occupied by such twins. 

The crystallographic analyses demonstrate clearly that in the simpler crystal structures 
there are many different geometrically feasible ways of continuing the shear of a moving twin 
which encounters an obstacle, especially a barrier twin. The conclusion of Sun et a/.(27o.mJ was 
that the main influence on the dislocation emissions comes from the stresses at pile-ups of 
incident twinning dislocations. 

7. TWINNING AND FRACTURE 

In many b.c.c. metals and alloys, a ductile-brittle transition is observed at temperatures 
similar to those at which plastic deformation by twinning becomes more important than 
slip. The high stress concentrations provided by deformation twins have long been 
recognized as potentially important in crack nucleation, and there is experimental evidence 
in some materials that cracks are formed, for example, at twin-twin intersections. Never
theless, it is necessary to acknowledge at once that twinning and fracture are essentially 
independent phenomena in the sense that brittle fracture is often observed without any 
detectable twinning, and that extensive plastic deformation by twinning without cracking 
is often a feature of tensile or compression tests at extremely low temperatures (see Figs 24 
and 25). 

There is much evidence available to show that in certain materials, either cracks may 
induce twins or twins may nucleate cracks. One factor common to both twinning and brittle 
fracture is the very high growth rate which is often an appreciable fraction of the elastic 
wave velocity. Thus a rapidly expanding crack which has high shear stresses near its tip 
produces a very high rate of stressing in the surrounding material, and this high stress rate 
is a condition likely to favour twinning. In an early paper, Bilby and Bullough(281 J showed 
theoretically that twins may form either side of a moving crack, and this was soon after
wards verified by Derruyterre and Greenough(282l in experiments on zinc. In his comprehen
sive review of the association of twinning and fracture in b.c.c. metals, published in 1982, 
Reid(283l attributes the first suggestion of the reverse process, namely that twins induce 
cracking, to O'NeiW284l in 1926, but it was only in the period from 1945 onwards that this 
possibility began to be seriously investigated. The pioneering studies of HuW285- 287l and 
Honda(288l showed examples of twin-induced cracking in iron-silicon single crystals, especially 
at twin-twin intersections. Hull suggested that when twins with non-parallel shear directions 
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intersect, microcracks are most likely to form when the resolved normal stress on a {001} 
potential cleavage plane is large and the line of intersection of the twins is nearly parallel 
to this plane. It follows that the experimental condition most likely to induce cracking is a 
tensile test along a (001) axis which could produce (001) cracks at either (ITO) intersections 
of {112} and {II2} twins or at (110) intersections of {112} and {Il2} twins. 

The association of twins and cracks may be tested experimentally either by direct 
examination of fracture surfaces or by optical or electron metallography. The fracture surface 
method is valid only for single crystals, where the surface contours ('river lines') generally 
give a unique indication of the place where the cleavage crack was nucleated. Evidence of 
a twin pair at or very near to this site thus supports Hull's hypothesis, especially if the 
twinning systems can be identified. Metallographic evidence of the association of microcracks 
and twins is less convincing since the origin of either defect is not usually identifiable, thus 
leaving the 'which came first' problem unsolved. 

The early experimental results of Honda<288l and Terasaki<289l on pure iron are consistent 
with Hull's assessment; they observed an orientation dependence of the mode of stress relief 
in which cracking was preferred to slip accommodation under appropriate conditions. 
Edmondson<290l confirmed that cracks form at twin intersections in iron, and they were 
subsequently observed in molybdenum by Reid et a[.<291 l and in chromium by Marcinkowski 
and Lipsitt.<210l 

There is an apparent contradiction between the experimental work just quoted and the 
absence of cracking in, for example, the investigations of Mahajan(l 50•165.256•292l described in 
Section 6. The difference is probably mainly a chemical effect since both fracture properties 
and twinning are very sensitive to composition, but in terms of twinning parameters, it may 
plausibly be linked to the relative growth rates of twins in different materials. Since the 
dislocation density cannot be increased instantaneously, the sudden imposition of a high 
stress rate in a localized region requires high dislocation velocities in order to accommodate 
the field of the twin by slip. In b.c.c. materials, where dislocation velocity is very 
stress-dependent, this in turn requires high local stresses, which may then exceed the stress 
required for crack nucleation. This suggests that cracks are more likely to form from twins 
with high growth velocities at places where the density of mobile dislocations is low, so that 
the difference in behaviour may be linked to fast twin growth in iron, iron-silicon, chromium, 
etc. and to much slower growth in molybdenum-rhenium alloys. An alternative description 
is that the highest stresses develop around a twin which has been prevented from further 
growth, e.g. by a barrier twin, and the resultant pile-up produces a very high, static stress 
field which causes cracking. 

There are several later reports<293- 296l of twin/crack association in b.c.c. metals and alloys, 
and it is now well established that in many, but not all, such materials, microcracking may 
be induced by twinning. However, this is by no means the whole story, since the observed 
microtwins are not necessarily related to the macrocrack which eventually causes failure. The 
microcracks vary considerably in different experiments, sometimes being located within one 
or other of the twins rather than in the matrix or along the twin-matrix interface. Microcracks 
sometimes form at twin-grain boundary interfaces, when they are usually intergranular, or 
at places where a twin reaches a free surface. 

Since the spatial conjunction of a twin and a crack is not sufficient evidence that 
macroscopic failure is induced by the twin, Williams and Reid<297l attempted to decide whether 
or not the crack and the twin form at the same time. They used an electromagnetic technique 
capable of indicating separately the onset of twinning and fracture with a high temporal 
resolution. With notched samples of coarse-grained silicon iron tested in tension at 77 K, 
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signals identified as bursts of twins were detected at times of2-20 JlS before the fracture signal, 
thus indicating that in this case, the twin formation led to both the nucleation and the 
subsequent growth of the major crack which caused failure. On the other hand, no twinning 
signal before failure was detectable in similar unnotched specimens. This difference is 
consistent with earlier indirect attempts to decide on the role of twins by comparing the 
twinning stress in a compression test with the fracture stress in tension. Reid pointed out that 
such a comparison is invalid if there is any texture in the material tested (see discussion in 
Section 5.1 ). Similar criticism applies to various attempts to test the association of twinning 
and fracture by comparison of the ky, k, and kr factors derived respectively from Hali-Petch 
plots of yield, twinning and fracture stresses vs grain size. 

As already emphasized, twinning in h.c.p. materials is often a ductilizing rather than an 
embrittling agent, inasmuch as twin formation helps to compensate for the small number of 
operative slip systems, and in particular the difficulty of achieving c + a slip. The beneficial 
effect of twinning on ductility is illustrated by the embrittlement of cadmium-magnesium 
alloys<65J in the composition range where {1012} twins are unable to form because of the 
critical axial ratio of 3~. In general, more than one twinning mode may be required to secure 
compatible deformation by slip and twinning of polycrystalline material, and it is note
worthy that the very brittle h.c.p. metals (e.g. beryllium or zinc) twin only on { 1012} whereas 
the more ductile metals (titanium, zirconium, rhenium) have additional twinning modes. 
Such correlation is far from perfect; cadmium, for example, has an axial ratio similar to 
that of zinc and also deforms by twinning only on {1012), but is nevertheless appreciably less 
brittle. 

The h.c.p. basal plane is the only cleavage plane for most h.c.p. materials, but in beryllium 
prismatic cleavage is also observed. There appears to be much evidence0 81 ·244·263·298·299 l of plastic 
accommodation at slip-twin and twin-twin° 81 ·30<H02J intersections. Yoo081 J has suggested that 
twin interfaces are effective sites for nucleation of other twins in materials like titanium, and 
for cracks in less ductile materials like beryllium, but in contrast to the b.c.c. work, there is 
little direct evidence of the association of twins with cracks. 

Almost all f.c.c. metals and alloys are ductile at all temperatures, but there are exceptions, 
namely austenitic steels containing about 20% chromium with high manganese and nitrogen 
contents. Certain alloys of low stacking fault energy undergo ductile-brittle transitions at 
sub-zero temperatures; the transition temperature is increased by nitrogen and manganese 
additions (which lower the fault energy) and also by nickel additions. Much of the 
deformation is produced by twinning, and microcracking has been observed at twin-twin 
intersections. In a very recent paper, Miillner et af.<303l develop a model of crack nucleation 
in such alloys in terms of the stress field around a blocked twin, modelled as a disclination 
dipole. In their model which is claimed to give good agreement with experiment, the fracture 
tendency depends upon the stress field of the blocked twin and the local density of mobile 
dislocations. 

In summary, there is good evidence that blocked twins can nucleate microcracks in some 
materials and incomplete evidence that these cracks may initiate macroscopic failure. 
However, brittle failure without detectable twinning appears to occur also in many b.c.c. 
alloys. 

8. ADDENDUM 

This review has been written at a time when interest in deformation twinning has risen 
sharply, largely as a result of its importance in the deformation behaviour of many 
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intermetallic compounds. The inevitable consequence that some important papers could not 
be included because they were published after the review was completed would normally have 
to be accepted, but in one respect 1993 was an unusual year. At the Fall meeting of the 
Metallurgical Society of AIME, a symposium was organized to discuss all aspects of 'The 
Twinning of Advanced Materials', and many important papers were presented. A few 
authors kindly sent preprints in time for their work to be included in the body of this review, 
but for others the timing made this impossible. However, the majority of the authors whose 
work concerned deformation twinning and was thus relevant to this review, generously 
responded to a later request for preprints, and thus facilitated the writing of this Addendum. 
In addition to those papers presented at the conference, the opportunity has been taken to 
include a few others which have either been recently published or are soon to be published 
in the general literature. The topics mentioned in the Addendum will follow, as far as is 
practicable, the same order as the material in the main text. 

In his introductory paper to the twinning symposium, A. G. Crocker(3°9> described how 
the definition of a twinning shear as "a homogeneous shear which restores the lattice in a 
new orientation" led to a generalization of the formal crystallographic theory of defor
mation twinning, which included the possibility that all four of the crystallographic elements 
defining a particular mode are irrational. He also discussed the theory of twinning in a 
four-dimensional space,<3' 0> and its relation to three-dimensional twinning. 

A striking new crystallographic result is the report by Baggerly and Williams<311 > of an 
unusual twinning mode in a Ti-6.5at%Mo alloy with a b.c.c. structure. Single crystals of 
the alloy were quenched from the solid solution region and then tested at temperatures 
ranging from 77 to 400 K. Deformation was mainly effected by twinning, and the amount 
of slip was negligible, but the twinning did not utilize the expected {112}(II1 > mode. 
Instead, the K1 plane was unambiguously identified as {332} and the q1 direction as (113). 
As emphasized in Section 2.5, the normal b.c.c. mode is the no shuffle mode of lowest 
shear. Table 1 shows, however, that the {332} mode and its conjugate have one-half of the 
shear of the usual {112} mode, and thus become the modes of lowest shear if up to one-half 
of the atoms are allowed shuffle displacements relative to the others. The appearance of this 
mode might therefore not seem so anomalous, were it not that there are no reports of 
its occurrence in any other alloy system. Excellent agreement was found between the 
measured shear of 0.35 and the theoretical shear of 0.352. The reason for this unusual mode 
has yet to be determined. 

Goo<3' 2> has reconsidered the problem of twinning in the cubic superlattice structures B2, 
D03 and Ll 2 • He points out that the operative mode in each case may be a pseudomode, 
a true mode of high shear or a mode requiring atomic shuffles, and he tabulates shear modes 
of various kinds for each structure when up to 3/4 of the atoms are allowed to shuffle. A 
survey of the experimental results indicates that pseudotwins are the only shear products 
formed under stress in any of these structures except for B2 where, as already described in 
Section 2.6, {114} twins have been observed in some alloys. 

Goo notes that a { 104} mode has a smaller shear than the { 114} mode but in both the B2 
and the b.c.c. structures, this mode requires 3/4 of the atoms to shuffle (which is why it is 
not listed in either Table 1 or Table 2 of the present review). The experimental result indi
cates that the simpler shuffles of the observed mode are more important than the lower 
shear of the { 104} mode. Goo's table for B2 does not include the {332} mode, possibly 
because this mode was not listed in Table 1 of Ref. (35) which gives illustrative examples 
rather than a complete catalogue. The {332} mode has a still lower shear (see above) but also 
(for B2 but not for b.c.c.) demands that more than half the atoms shuffle. 
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All the listed modes for the Do3 structure except the { 112} pseudo mode derived from the 
b.c.c. mode, have shears greater than unity, and this is presumably why only pseudotwinning 
has been observed for this structure. Similarly, only with shuffled atomic fractions of greater 
than one-half, is it possible to have a twinning shear of less than unity in the Ll 0 structure. 
Although the experimental evidence is not very clear, it is believed by most workers in the 
field that only simple pseudotwins form in this structure. 

Values of the Laves shuffle parameter, see p. 34, are listed by Goo, who apparently 
accepts it as a significant factor in the choice of a twinning mode. However, it is difficult 
to find any example in which minimizing this parameter is not exactly equivalent to minimiz
ing the fraction of atoms which must shuffle, so that the value of the Laves parameter as a 
discriminant seems dubious. 

Several experimental investigations of the deformation behaviour of Ni3Al, which has a 
Ll 2 structure, have generally failed to find evidence of deformation twinning, except for some 
two phase y + y' nickel-based superalloys in which microtwinning was observed<313•3141 in y' 
grains. This microtwinning was attributed to random formation of stacking faults which 
accumulated to form thin (imperfect) twins. However, Albert and Gray<3151 and Gray<3161 have 
recently demonstrated that deformation twinning can occur both in a single phase Ni3Al 
alloy containing 0.095at%B and in a two-phase Ni-20at%Al-30at%Fe alloy. The single 
phase alloy was shock-loaded to a stress of 14 GPa and the two phase alloy was rapidly 
deformed (strain rate 3,000 s- 1) to a total strain of 16%. Twins and stacking faults were 
observed in some Ll 2 grains of both alloys, but the other phase of the Ni-Al-Fe alloy which 
had the B2 structure was apparently untwinned. The twins in each case completely crossed 
the y grains in which they were observed, but they were not numerous and it is estimated 
that those observed contributed little to the overall plastic deformation. In the two phase 
alloy, for example, extensive planar slip was observed in virtually every grain, but twins 
were visible in only about 10% of the Ll 2 grains. No stacking faults were found in the 
two-phase alloy, possibly because of the higher energy of the fault, or because of the slower 
strain rate. 

Electron microscopic investigation showed the K 1 plane to be { 111} but it was not possible 
to determine whether the product had the Ll 2 structure or the structure of the pseudotwin. 
Superlattice spots on electron diffraction patterns were very weak and diffuse, and this is 
presumably due to the high strain. The authors assume that the final structure is the perfect 
Ll 2 and, after dismissing the possibility that the pseudotwinning mode is accompanied by 
interchange shuffles as being too improbable, they suggest instead that the first no shuffle 
mode of Table 2 with a shear of 2~ is the operative mode. They concede this has a large 
shear, but do not give its magnitude, nor do they address the difficulty that atoms must pass 
one another in A-A configuration to accomplish this shear. On the other hand, the third 
possibility that pseudotwins form without shuffling is considerably enhanced by the imperfect 
long range order which must result from the extensive deformation. 

Various structures which may conveniently be regarded as differing only in the stacking 
sequence of equispaced atomic layers can transform into other layer structures or, in some 
cases, can form deformation twins, by the passage of transformation or twinning dislocations 
(essentially equivalent to Shockley partials) along the layers; the simplest example is the 
twinning of f.c.c. crystals. In some crystal structures, however, it may be impossible to effect 
such a displacement sequentially between pairs of adjacent layers, and it is then necessary 
to invoke simultaneous displacement of two or more layers in order to avoid intermediate 
configurations with impossibly close interatomic encounters. Such processes were called 
'synchroshear' by Kronberg<3171 but appear to have been largely ignored in the subsequent 
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literature. Hazzledine<18> has recently discussed transformations between, and twinning in, 
Laves phases from the viewpoint of synchronous shear. All Laves phases consist of alterna
tions of single layers of small atoms which are relatively well separated from closely-spaced 
triple layers of large-small-large atoms. The triple layers may be in either ABC or ACB 
configuration, but the layers are so close together that displacement of one relative to the 
other two is not possible. However, if layer 2 and the crystal above it is displaced in direction 
11 and layer 3 and the crystal above it are simultaneously displaced in direction 12 , an original 
ABC configuration is converted to ACB. This means that Shockley dislocations with Burgers 
vectors b1 and b2 move simultaneously so that the net displacement of the two parts of the 
crystal is b3 = -(b1 + b2 ), and the synchroshear may be regarded as the passage of a single 
Shockley which has, however, a core extended over two planes. Note that a transformation 
in the case of Laves phases always involves changes in the stacking within triple layers; only 
in the case of the cubic Laves phase (CIS type) does synchroshear of each triple layer lead 
to a twin. 

There have been further developments in atomistic calculations of the structures and 
energies of various h.c.p. twin boundaries. Morris et a/.<319•320> have studied the four K1 

interfaces of Table 5 in the case of zirconium. For the "compression" twins {lOTI} and 
{1122}, the relaxed atom sites near to the interface were determined by a combination of 
molecular dynamics and first principles calculations. In order to implement the molecular 
dynamics, an empirical many body potential for zirconium was developed using the 
"embedded atom method" (EAM), and this potential is stated to be similar to the 
Finnis-Sinclair potential used in the work of Bacon et a/.<95•97•111 > For each twin boundary, a 
unique, low energy, zero force description was found to be independent of the starting 
configuration, and a periodic array of twins using the relaxed structure was then used in 
a first principles calculation of the electronic structure, and hence of the energy. The cell 
geometry and the atomic positions were finally adjusted to give the minimum energy. 
These calculations show that mirror symmetry is preserved in both interfaces, and no 
indication of a previously reported glide displacement for the { 10 I I} twin was found; the 
atomic configurations in the vicinity of the interface are quite similar to those of Bacon 
eta/. 

The calculated twin boundary energies are shown in Table 6 which also includes a 
comparison with earlier work. In almost all calculations, the energy of the {I 0 I I} twin 

Table 6. Computed Energies for some h.c.p. Twin Interfaces<320> 

Twin boundary energy (kTm/rx2) 

Model {lOTI} {1122} {IOT2} {1121} 

Zr first principle<3191 0.28 1.17 
ZrEAM 0.57 0.97 0.86 0.56 
Zr FS<3601 0.80 0.87 0.93 0.60 
Ti FS<3611 0.60 0.68 0.89 0.49 
Mg FS<3621 1.15 1.17 1.52 1.19 
na56<97.111> 0.64 0.92 1.15 0.73 
LJ56(127) 2.49 0.87 0.95 0.69 

Notes-k =Boltzmann's constant, Tm =melting point, rx =lattice par
ameter. EAM = embedded atom method, FS = Finnis-Sinclair poten
tial, na56 = oscillatory long-range potential, originally developed for 
sodium, LJ = Lennard-Jones simple analytic potential. Since kTm ~ £, 

the energy units are approximately the same as those of column 2, Table 
5 which were computed with the na56 potential. 
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interface is lower than that of the {1122} interface, but the difference is much more 
marked in the first principles calculation of Morris et al. than in earlier work with model 
potentials. The authors point out that the lower energy of the { 10 T I} mode implies that 
conventional nucleation theory cannot explain the preference for the {1122} mode at low 
temperatures. 

The first principles calculation necessitated a periodic array of twins, and the resultant error 
was estimated by calculations of the interface energies for an array and an isolated interface 
using the empirical (EAM) potential. The results indicated, firstly, that the twin-twin 
interaction of the array reduces the specific twin interface energy by about 7%, and, secondly, 
that the ratio of the energy of the {lOTI} boundary to that of the {1122} boundary is 
unchanged in the array configuration. The calculations with the empirical potential give 
numerical values which, for compression twins, are not in very good agreement with the 
'true' values obtained from first principle calculations. Nevertheless, the ratio of the two 
interfacial energies is appreciably lower than that found in earlier work, although not so low 
as that derived from the first principles calculation (see Table 6). The similarity of the 
structures found for the various interfaces when different model potentials are used for the 
simulations is surprising in view of the wide spread in the compression twin energies, and 
the authors suggest that this may imply that the structures are determined mainly by the 
geometry. 

First principle calculations are very time consuming and can only be applied to very small 
atom blocks. Similar calculations are in progress for the tension twins, {I 0 T2} and { 1121}, 
but comparable results are not available at the time of writing. However, twin boundary 
structures and energies have been determined by utilizing the empirical model potential. The 
structures found are again all very similar to those deduced from earlier work, and in the 
case of the { 1121} interface, the atomic arrangement breaks the mirror symmetry across 
the interface. The energy values are given in Table 6, and in contrast to the behaviour of the 
compression twins, results obtained with the EAM method now agree remarkably well with 
previous calculations using potentials appropriate to titanium or zirconium. 

Meanwhile, Bacon and Serra<32 'l have further developed their atomistic simulations of the 
structures of interfaces and interface dislocations, and have provided the first reported 
treatment at an atomic level of the interaction between a lattice dislocation in the matrix 
and a coherent K, twin interface. In Section 6, it has been emphasized that the simplest 
dislocation-interface interactions occur when the interface is planar and the dislocation meets 
it in screw orientation. This is the condition investigated by Bacon and Serra for {10I2} and 
{lOTI} interfaces in titanium. A matrix screw dislocation with Burgers vector (121 0) is 
parallel to both these interfaces and it is known to glide on either basal (i.e. {0001}) or prism 
(i.e. {IOIO} planes); these two possibilities will be called BS and PS, respectively. Simple 
crystallography then allows either type of matrix slip to be continued on either the basal 
or the appropriate prism plane of the twin. In practice, however, the situation is more com
plex because calculations indicate that there are two, different, stable core configurations 
(with similar energies) for the lattice screw dislocation. One structure (BC) approximates to 
an extended dislocation on the basal plane; the other (PC) is not describable in simple terms, 
but results from dissociation largely along the prism plane. The PC dislocation moves readily 
on the prism plane at quite low applied shear strains, but cannot be induced to move on the 
basal plane; the BC dislocation is relatively immobile on the basal plane up to quite high 
strains unless other shear strains are imposed. 

For a {IOT2} twin, the basal planes of one crystal are at an angle of only 6° to the prism 
planes of the other, so that cross-slip at the interface on to a different type of slip plane in 
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the twin is favoured by the applied stress. The calculations show that a PC dislocation moving 
up to the interface on a prism plane may either cross it on to a basal plane or on to a prism 
plane of the twin, depending on whether the core centre lies between the widely or the 
narrowly spaced prism planes which alternate along the twin interface. The BC dislocation 
transfers from the matrix basal plane to the twin prism plane in both cases. The results show 
that the {IOT2} boundary acts as a barrier to prism slip and inhibits both the PS-BS and the 
PS-PS crossing mechanisms. 

At the {lOTI} boundary, the basal planes of one crystal are at 32° to the prism planes of 
the other. This interface also acts as an obstacle to slip, but surprisingly the mechanism found 
by Bacon and Serra is quite different. In most circumstances, the t<I210) screw dislocation 
does not cross the boundary but dissociates instead into two "twinning dislocations" each 
with a screw component of i<I2IO) and with small equal and opposite edge components. 
These dislocations remain in the interface, which is advanced by two lattice planes in the 
dissociated region between them, but they are clearly not the twinning dislocations which 
produce the normal deformation twin (see Section 3.2). It is believed, however, that with the 
edge components they correspond to the twinning dislocations of the transformation twinning 
{lOTI} mode, which are in fact the most mobile of the possible step defects in this interface. 
If successive incoming screws are held up at the interface by such a dissociation, the {lOTI} 
interface must constitute an appreciable obstacle to continued slip. 

The results of atomistic simulations of non-screw dislocation interactions with K1 interfaces 
must now be awaited with interest. Clearly, however, if the first dislocation is held up at the 
interface, it is very difficult to simulate the effects of successive dislocations which form 
pile-ups and thus modify considerably the local stress fields. 

Turning next to models of the interfaces of enclosed twins, Mitchell and Hirth<322l have 
examined a two-dimensional version of Orowan's lenticular twin shown in Fig. 9. Using a 
method involving Hilbert transforms, they were able to deduce the distribution of straight 
twinning dislocations normal to the plane of Fig. 9. The details of the distribution, 
i.e. the position of each dislocation in the array, enables more exact stress calculations to be 
made. The predicted shape normal to the dislocations is close to a flattened ellipse, 
except very near to the tip where it deviates in opposite senses for edges and screws. The 
results thus suggest that the three-dimensional ellipsoid (or oblate spheroidal) model is an 
adequate approximation to the true shape. 

Lee and Y oo<323l have reconsidered the theory of homogeneous nucleation of twins. They 
first reviewed their previous work on shape bifurcation (see Section 4.1) and extended it to 
consideration of heterogeneous nucleation on a substrate. They then attempted to simulate 
twin nucleation in a b.c.c. crystal under stress. The well-known Johnson potential<324l was 
assumed for the interatomic force law, and the simulation used a modified Monte Carlo 
technique in which the nearly random displacements of each individual atom are biased in 
the direction of the net force acting on the particular atom under consideration. The com
puter "box" was treated either as a crystal with free surfaces or, with periodic boundary 
conditions, as part of a larger unit, and was stressed by imposing a uniform shear over the 
whole or over the central part of it. The homogeneous deformation did not produce the 
anticipated cooperative shearing to a twin nucleus with either the free surface or the periodic 
boundary assumption. Instead, the structure remained uniform and on removal of stress 
(i.e. imposed strain), it collapsed back into the b.c.c. form below a threshold value of the 
imposed strain, and transformed homogeneously into a (metastable) f.c.c. structure above this 
threshold. The authors attribute the failure to nucleate to the small number of atoms in the 
computational box, and the relatively high interfacial free energy which results in a large 
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critical nucleus size. This is undoubtedly true, but it is not obvious that interfacial energy 
and critical nucleus size are relevant to the homogeneous shear of an isolated crystal. In 
principle, the whole box can form a twin, not by growth from a small embryo with 
concomitant strain and interfacial energies, but homogeneously when the uniformly strained 
lattice reaches a condition of mechanical instability. Since the imposed strain was a simple 
shear, the collapse to a f.c.c. structure, rather than to a twin, at high imposed strains is 
remarkable, unless the atomic potential used favoured this structure rather than the initial 
b.c.c. structure. 

Some confusion may be caused by references in this paper to nucleation and it should 
perhaps be emphasized that a procedure of this type whilst giving a minimum free energy 
state for given imposed conditions, does not necessarily find the absolute minimum which 
may require the assembly to pass through intermediate states of higher free energy. More
over, the relaxation of the structure may both involve procedures not accessible to the real 
crystal and fail to include real procedures. In particular, the Volmer-Weber-Becker-D6ring 
type of kinetic process which describes homogeneous nucleation as the result of a series of 
local fluctuations is very difficult to simulate because of its statistical natureY0> So-called 
'steady state' nucleation is not attained until a quasi-equilibrium distribution of sub-critical 
embryos of different sizes and shapes has been established, and any successful nucleus must 
survive many shrinkage fluctuations, the probabilities of which are always higher than 
those of growth fluctuations, before reaching the saddle point configuration beyond which 
the probability of growth exceeds that of shrinkage. To simulate such a process would 
require not only a much larger computational box but also an immense amount of computer 
time. 

When the imposed strain was confined to a central portion of the computer box, interfaces 
were artificially introduced between the sheared and unsheared regions and their energy was 
thus available to assist in nucleation. This led to twin formation and in particular to multiple 
twins, rather than a single twin. This is attributed to free energy minimization; the strain 
energy of a constrained twin is reduced by dividing it into a number of parallel twins with 
smaller aspect ratios, but this splitting is opposed by the accompanying increase in surface 
free energy. 

High resolution electron microscopy has been used to verify the fully coherent nature and 
high state of perfection of K1 interfaces. Recent examples are lattice images from thin twins 
and twin-matrix interfaces in TiAl by Wardle et a/.,(278> by Couret et a/.,(325> Farenc et a/.(277.326> 

and by Appel, Beaven and Wagner.(327- 329> Couret et al. have also addressed the need for better 
verification of the magnitude of the shear, mentioned at the end of Section 4.5. They have 
used electron microscopic methods to measure the total shear across very thin twins and have 
thus shown that this corresponds to one twinning dislocation having moved through each 
lattice plane. This is another indication of the perfection of the twin structure which these 
measurements indicate is within 5%. It should be recalled, however, that in TiAl, the structure 
permits only one twinning direction to each K, plane, so that the probability of occasional 
faults or defects may be lower than in atomically disordered materials. 

Examples of twinning dislocations, i.e. interface steps, have been shown in Figs 13, 14 and 
18, for example, and in each case a parallel set of twinning dislocations of the same sign 
typifies a tapering twin. Measurements by Couret et al. on TiAl indicate that the distance 
between successive twinning dislocations initially increases with distance from the tip in a 
manner characteristic of that expected from a dislocation pile-up, and then remains 
approximately constant when the number of twinning dislocations exceeds "'15. This is 
significant evidence relating to the problem of the shape of a twin tip or edge. 
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Couret and his coworkers<277•325•326> have also carried out deformation experiments in situ 
in the electron microscope, and have thus verified directly that twins form by the motion of 
twinning dislocations (Shockley partials in this particular case). The observed twin velocities 
were small and roughly constant, of the order 50 nm s -I, and the separation of the twinning 
dislocations was unchanged during growth. Backward motion was observed on release of the 
applied stress. The authors conclude that the growth velocity is governed by a friction force 
which acts equally on all the twinning dislocations. They also suggest that nucleation simply 
results from the dissociation of a superdislocation and subsequent interaction of the twinning 
dislocations with perfect dislocations to form pole sources. Some of their micrographs appear 
to show such sources. 

The distribution of twinning dislocations just described for TiAl and the calculations of 
Mitchell and Hirth clearly support the lenticular model of an enclosed twin and the pile-up 
model of a twin tip rather than the disclination model of Miillner and Solenthaler.<238·239> In 
agreement with this conclusion, there appear to be many published micrographs showing 
lenticular or tapering twins but few showing blunted twins. Blunted twins were noted by 
Calais et at.<330l in their early work on uranium, but they appeared only during annealing of 
deformed specimens at temperatures where individual atomic migration was rapid, so that 
the deformation twin lamellae frequently contracted and eventually disappeared. The authors 
attributed the blunting to the formation of incoherent interfaces as a result of the enhanced 
atomic mobility. Similar observations were made by Cahn and Coll.<46> 

Miillner and Solenthaler's original argument for a blunted twin depended on the 
assumption that the leading dislocation is pinned, and this condition has already been 
discussed in Section 6.1; it clearly does not apply to a freely growing twin. The in situ 
experiments of Couret et al. investigated twinning under conditions of very small growth 
rates, but there is some difficulty in describing, in terms of the motion of individual twin
ning dislocations, the often observed growth of twins of finite thickness at velocities 
approaching the speed of sound. The difficulty arises from the relatively slow growth nor
mal to the interface predicted by the pole mechanism or by a spontaneous nucleation 
mechanism. To avoid this difficulty, Hirth<331 > has proposed that fast growth might be due 
to a preformed dislocation wall (or 'square') interface, the constituent (edge-type) twin
ning dislocations of which could move together at near-sonic velocities. Such a twin may 
be formed by the bowing out and breakaway of a segment of a symmetrical tilt boundary 
(or the tilt component of a more general grain boundary), in a similar fashion to that 
described by Olson and Cohen<332> for the nucleation of martensite. The problem of slow 
normal growth is thus avoided by setting this growth rate to zero and utilizing a nucleus 
which already has the final thickness. One objection is that, except for b.c.c. structures, 
the Burgers vectors of the interface dislocations will not readily convert into those of twin
ning dislocations, nor will they have the correct density to produce just the required number 
of twinning dislocations. Another is that the model applies only to that part of the peri
phery of a plate where the twinning dislocations have edge orientation. Finally, an 
Orowan type bow-out would probably lead to a moving interface which is not flat but has 
the shape of a circular or elliptic cylinder. In any event, a fixed array of twinning dislocations, 
whether representative of a tapering (lenticular), a hemicylindrical or a flat square interface, 
must presumably be able to migrate parallel to K1 with high velocity. 

There are many recent papers proposing twinning mechanisms, most of them for specific 
structures. However, a paper by Basinski et a/.,<333 > although formulated with reference 
especially to the f.c.c. structure, essentially deals more generally with the relation between 
pole and ratchet mechanisms. The authors show that if a long jog initially dissociates to 
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form a ratchet-type source (i.e. an antigenerating node), the two opposite partials which meet 
on adjacent planes after the first turn may, in principle, glide past each other so that each 
attaches itself to the opposite node and both recombine with the sessile dislocation along the 
original superjog to form a new dislocation with the Burgers vector required by the pole 
mechanism. (In the Venables mechanism, each segment recombines separately with part of 
the sessile dislocation, and the cross-slip effects the interchange necessary for "node 
conversion".) The adjacent elements of twinning dislocation can now rotate about the two 
nodes in the opposite sense to that of the first turn, and the configuration has become a true 
pole. 

In terms of the f.c.c. structure, the reaction involved in the conversion is simply: 

to 11> + 2 x ~<TI2> = <ool>, 

(see eq. 52). However, this ingenious proposal has the same difficulty as the monolayer 
true pole mechanism, namely the necessity for elements of twinning dislocation to pass each 
other on adjacent lattice planes. In fact, since both pole and ratchet form from the same lat
tice dislocation, there must be other (virtual) processes linking the two. The simplest, but 
physically least probable, conversion requires b: to emit two twinning dislocations which 
glide away from it on opposite sides. One of these can then eliminate the fault left by the 
original dissociation, and ultimately the twinning dislocation (with Burgers vector - b,-) 
bounding it, whilst the other trails a new fault of the same type on the opposite side 
of b:. 

A model for b.c.c. twinning described by Lagert0f<334> is a ratchet mechanism closely similar 
to the Pirouz model for semiconductor materials. Lagerlof assumes that a short screw segment 
of a lattice dislocation lying between pinning points in its glide plane dissociates into three 
~<I 11) dislocations which are assumed to lie on successive lattice planes of type { 112}. The 
group of three twinning dislocations bows out under an applied stress and rotates about the 
pinning points in a manner equivalent to that of a Frank-Read source, to give a closed loop 
of a three-layer fault or thin twin. After one turn, the screw dislocation is regenerated and 
then undergoes double cross-slip onto the next three {112} planes on which it blows out 
another loop of three-layer faults. The twin is thus assumed to grow by alternating double 
cross-slips. 

This theory is essentially a combination of earlier theories which depend on the dissociation 
of screw dislocations with the simple ratchet mechanism of Venablesn44> and Pirouz.< 173- 175> 

There are the difficulties already noted that the postulated dissociation of the screw 
dislocation is more usually described as a spreading of the core, and the intimate double cross
slip is also essentially a core effect rather than genuine cross-slip. The repeated alternation 
of the dissociation, bowing out fine cross-slip and recombination needed to produce a twin 
of adequate thickness appears somewhat improbable, but Pirouz emphasizes in relation to 
his own theory that "although the term 'double cross-slip' is used ... what is really happening 
is just a rearrangement of the dislocation cores from one plane to the next". 

Pirouz<335> has reviewed his own theory as applied to bulk semiconductors in both elemental 
and compound form. His description, as already noted, depends on a large difference in the 
mobilities of the two Shockley partials into which a lattice dislocation dissociates, and the 
periodic cross-slip is to the immediately accessible next lattice plane. 

A matter of considerable practical importance is the formation of deformation twins in 
coherent epitaxial films which have been deposited on a slightly misfitting substrate. When 
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the thickness of the film exceeds a critical value, its large elastic strains begin to be reduced 
by nucleation of dislocation loops at the free surface of the film and their subsequent spread 
to the substrate-film interface where they become misfit dislocations. The elastic coherency 
strains may also be relieved by twinning, and Pirouz<33> envisages that this occurs by 
nucleation of a twinning dislocation rather than a lattice dislocation at the surface of the film, 
followed by subsequent nucleation and spreading of further loops on immediately adjacent 
planes. This accommodation twinning may be regarded as a special kind of deformation 
twinning. 

When the misfit is sufficiently small, surface nucleation may not be needed since misfit 
dislocations may be generated by the glide of threading dislocations. An alternative 
mechanism for twin formation might be the dissociation of threading dislocations into 
Shockley partials and subsequent glide of one of the partials under the influence of a 
misfit-induced stress. 

Twinning in semiconducting materials usually occurs more readily at low tem
peratures where there is little intrinsic ductility. Deformation twins may produce some 
plasticity either around a microindentation of the specimen or in a specimen subjected to a 
uniaxial compressive stress superimposed on a uniform hydrostatic pressure. The strong 
covalent bonds in semiconductors lead to high lattice friction and twinning dislocations 
tend to lie along (110) Peierls valleys with Burgers vectors at 30° ·or 90° to the line 
direction; in addition, straight (112) (screw or 60°) dislocation segments have also 
been identified. In situ experiments on silicon or GaAs at temperatures where twinning 
is the dominant mechanism of plastic deformation are very difficult because of the 
presence of microcracks. However, Vanderschaeve and coworkers<336•337> have recently 
found that twins form in thin foils of some 111-V compounds during in situ deformation 
at elevated temperatures where deformation is primarily by dislocation glide. Thus in 
GaAs, no twins appear to form in foils deformed in tension in the medium temperature 
range of 443-543 K, but at 573 K, twins were found in the vicinity of crack tips. The 
nucleation of these twins is suggested to occur only above the brittle-ductile tran
sition, which would thus be placed for these specimens somewhere in the range 
543-573 K. 

The motion of the twinning dislocations appeared to be smooth and continuous, and this 
is taken as an indication that they are subject to a high lattice friction (Peierls-Nabarro) 
stress even at this relatively high temperature. Growing twins frequently appeared to have 
a few groups of 3--4 twinning dislocations moving ahead of a procession of a large num
ber of twinning dislocations. In each group, the leading dislocation had an angular 
appearance with segments of nearly screw and 60° orientations, whilst the following 
dislocations were smoothly rounded. The tentative explanation of these observations is that 
in addition to the forces which act on all the twinning dislocations, the leading dislocation 
experiences an additional retarding force per unit length equal to the magnitude of the 
stacking fault energy per unit area. The angular shape is attributed to this extra term, whilst 
a smoothly curved shape is taken to indicate that the net stacking fault stress is zero since 
any new faulted area extended behind a following dislocation is balanced by an equal 
reduction in fault area ahead of it. Vanderschaeve and Caillard<337> argue that their 
observations indicate that these twins are not 'regular' (i.e. perfect) since if a twinning 
dislocation moves on every plane, there would be only one angular dislocation leading each 
twin. The angular dislocations were initially formed as 30° dislocations, and there was a 
gradual transition to the kinked screw-60° character; this is attributed to greater mobility of 
90° kinks than of 30° kinks. 



Deformation Twinning 143 

A recent in situ investigation by Vanderschaeve et a/.(336) of twins forming at crack tips in 
InP crystals deformed in tension at 623 K came to similar conclusions, notably that the 
mobility of the 90° partial is greater than that of the 30° partial in this structure also. The 
asymmetry is probably a consequence of the different core structures. However, Azzaz 
et a/.(338l in a recent investigation of the deformation of undoped InP crystals deformed in 
compression at low strain rates (2 x w-s s- 1) found extended stacking faults, both intrinsic 
and extrinsic, but no evidence of twinning. The authors suggest without detailed justification 
that extrinsic faults have lower energy than intrinsic faults in this and other III-V compounds, 
but the partials bounding them have very small mobilities. 

In situ studies of the nucleation and propagation of deformation twins which form 
during slow deformation (and even, remarkably, during creep) of TiAl crystals at low and 
intermediate temperatures have recently been reported by Jin and Bieler.<339- 341 l The exper
iments are clearly similar to those of Vanderschaeve et al. on semiconducting materials, and 
more especially those of Couret et al. on TiAl, described above, but were for an alloy of 
composition Ti-48at%Al-2at%Nb---2at%Cr which had a two phase y + a2 lamellar micro
structure. High resolution electron microscopy has been used in very detailed investigations 
by Appel et a/.(327- 329) of the structure of the interfaces in similar two-phase alloys with 
compositions Ti-48.5at%Al-l2.5at%Mn and Ti-48at%Al-2at%Cr. The microstructure of 
these alloys consists of equiaxed y (TiAl) grains and colonies of thin parallel lamellae of a2 

(Ti3 Al). In the alloys of Appel and Wagner,(328l the volume fraction of a2 lamellae was less 
than 5% and the lamellar thickness was typically 10 nm-1 Jlm. With appropriate heat 
treatment, crystals of they phase may consist of alternating lamellae in true twin orientation, 
a structure which Yamaguchi and Umakoshi(273l refer to as polysynthetically twinned (PST) 
crystals since this term is used in mineralogy. PST is evidently a form of transformation 
twinning, and as discussed briefly in Section 2.7, arrays of twins formed in this way can be 
very effective in inducing ductility. 

Yamaguchi and lnui(342l showed that the y phase in such lamellar structures is inherently 
ductile in contrast to the single y phase structures with more than 50at%Al studied by Couret 
et al. which are brittle up to quite high temperatures. The ductility is however, very 
anisotropic and Yamaguchi and his coworkers have shown(273 l that the lamellar structure is 
'hard' when shear has to cross the lamellar interfaces (e.g. when an axis of compression is 
parallel or normal to the lamellae) and 'easy' when shear is parallel to the interfaces which 
may then be displaced to produce the required strain. However, there are contradictory 
reports in the recent literature about the effects on deformation twinning of varying the 
composition in the approximate range 48-52at%Al. Huang and Hall<343l reported that the 
tendency to twin was much higher in the two-phase (48at%Al) than in the single phase 
(52at%Al) alloy, but Sriram et a/.(344) found that at room temperature and above, twinning 
occurs readily at all aluminium levels in this range. Increase in deformation temperature 
above room temperature led to increased twinning in all alloys, and this was often manifested 
by the formation of thicker twins rather than by an increase in their number density. The 
number density was higher in y foils from the two-phase 48at%Al alloy than in foils from 
the 52at%Al alloy, but Sriram et a/. suggest this may be due to the finer grain size in the 
two-phase (titanium-rich) alloys, rather than to any intrinsic effect of the change in 
composition. The finer grain size, especially in the alloys with a lamellar microstructure, 
provides more grains with favourable Schmid factors for twinning, and the authors point out 
that this is consistent with the results of Sun et a/.<270·271 ) who showed that the operative slip 
systems agree with predictions based on Schmid value calculations. A second suggested effect 
of a fine grain size is that it leads to more intense regions of inhomogeneous strain which 
JPMS 39n-2-J 
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Sriram et a!. suggest is needed for the grain boundary nucleation. The difference in twinning 
behaviour in the experiments of Huang and Hau<343l on the one hand and Sriram et a/.<344> 

on the other is then attributed to the much finer lamellae in the specimens examined by Huang 
and Hall. An alternative reason for the anisotropy is the orientation dependence of the slip 
modes in the cx2 (Ti3Al) phase. 

Jin and Bieler suggested that the observations of Farenc et a!. and Coujet et a!. may not 
apply directly to twinning in the less brittle two-phase alloy, and indeed their in situ 
observations in some ways correspond more to the semiconductor results of Vanderschaeve 
et a!. than to those of Farenc et at.<326l Although no angular dislocations were observed in 
TiAl, Jin and Bieler also observed that the twins appeared to grow by successive forma
tion and bowing out of twinning dislocations from grain boundary regions on to adjacent 
lattice planes of they matrix. The leading dislocation, or sometimes the leading pair, moved 
slowly and eventually came to a halt in the interior of the parent grain. Once formed, the 
next dislocation moved relatively rapidly to the vicinity of the lead dislocation, and appar
ently pushed it a little further into the grain before itself coming to a halt a very short dis
tance behind its leader. Repetition of this event then produced a microtwin. The formation 
at the grain boundary of half-loops of interface single steps (elementary twinning disloca
tions) on successive K1 planes is thus the operative nucleation mechanism in most of the 
single twins observed, but the exact interactions which produce the half-loops are not yet 
known. It is intriguing to note that most of the twins were highly regular, possibly suggesting 
either sympathetic nucleation of successive layers or some form of grain boundary pole 
mechanism. 

Occasionally, with relatively thick foils, twins appeared to nucleate from the grain interiors, 
as in the experiments of Coujet and his coworkers. However, a strong counter example is 
provided by a remarkable micrograph by Appel et a/.<328) showing twins nucleating on 
individual misfit dislocations of a semi-coherent y-y boundary (see Fig. 56). At this point, 
the customary, but necessary reservation must be emphasized; these thin foil experiments 
may not be at all representative of the twinning process in bulk material. Nevertheless, the 
evidence for grain and/or interphase boundary nucleation in the two-phase alloys seems 
fairly convincing. 

Jin and Bieler observed that the twinning dislocations near the tip of a twin were closer 
together than those remote from the tip, and they made a qualitative comparison with the 
results of Marcinkowski and Sree Harsha, but not with those of Mitchell and Hirth. How
ever, this work provides further confirmation of the lenticular model, at least in cases of 
slow growth. In further experiments, the actual distribution of twinning dislocations along 
a thin semi-lenticular twin of the plano-convex type illustrated in Fig. 38 was measured and 
the results used to calculate the back stress acting along the twin interface.(345l As expected, 
the back stress was very high near the tip but fell off rapidly with distance back along the 
twin. 

The absence of agreement on the value of a twinning stess in many metals and alloys despite 
very careful experiments has been addressed by Embury et a/.046) They investigated in detail 
the effects of chemical composition, specimen orientation and test temperature on the 
twinning stress of Cu-Al single crystals tested in tension. After analyzing a large amount of 
data, they propose a criterion for twinning in these alloys as follows. "Two conditions must 
be satisfied simultaneously if twinning is to occur. (i) The onset of twinning occurs only when 
there is a change in the dominant slip system, and (ii) a minimum stress, -rN, is required." 
In a tensile test, the change in orientation of the specimen eventually forces (with usually some 
'overshoot') the primary system to become less active than the conjugate system. The 



Deformation Twinning 145 

Fig. 56. High resolution electron micrograph of deformation twin nucleated at a y- y (TiAl) interface. The interface 
is semicoherent and the twin (arrowed in (a)) has been nucleated on one of the two misfit dislocations visible in (b). 

The specimen was deformed to failure (10.2% strain) at 800°C. (After Appel et ai.1328J. 

meaning of the proposed criterion is that if the applied stress at this point exceeds -rN, twin
ning will begin and that applied shear stress will be the twinning stress. If, however, the second 
part of the criterion is not met, slip will continue on the conjugate system until, after possibly 
a second overshoot, the primary system becomes dominant again. At this point, there is a 
second opportunity for twinning to begin, and this will again depend on whether or not the 
current applied (shear stress) level exceeds 't'N . 

If -r is less than 't'N and the ductility is adequate, the cycle can then be repeated. According 
to the hypothesis, a high work-hardening rat~! clearly favours early twinning, but although 
there is a convincing weight of experimental evidence the proposed criterion is entirely 
empirical as propounded. If it becomes established, it will no doubt influence the develop
ment of theories of twinning in f.c.c. crystals and other materials which twin only after 
appreciable deformation by slip. 

Most of the recent work on twinning in intermetallic compounds has been concerned with 
TiAI, but there have been a few investigations on other 'advanced materials', including that 
already described for Ni3 Al with the Ll 0 structure. Kumar and Vasudevan° 47l investigated 
twinning in a Ni- 25at% Mo- 8at%Cr alloy after ageing in the temperature range 650- 700°C. 
The short range order of the solid solution is thereby converted into a structure in which there 
is a high density of long range ordered Ni2 Mo precipitate particles with the Pt2 Mo struc
ture. At room temperature, the tensile strength of the alloy is almost trebled by this heat 
treatment, whilst the ductility decreases from 70% to 56% and 36% after 10 h at 650 and 
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700°C, respectively; a further slight reduction was observed after longer ageing times at 
650°C but the ductility remained high after all such treatments. The solution treated material 
deformed entirely by dislocation glide, but in the aged samples, microtwinning was the 
major contributor to the plasticity. The K1 plane was found to be the f.c.c. {Ill} plane for 
both the ordered precipitates and the matrix, and the authors' preliminary observations 
suggest that the initial formation of the twins may be attributed to the overlapping of stacking 
faults. 

The slip in the solution treated material is very planar, and this probably applies also to 
the initial deformation of the aged material. The authors suggest that the dissociation of slip 
dislocations into partials takes place when the slip is arrested by the long-range ordered 
precipitates. This is consistent with the observation that the majority of the twins are observed 
to be within the precipitates. Six orientation variants of the long-range ordered phase within 
a matrix grain were all identified, and the availability of these various deformation modes 
is probably responsible for the ductility remaining high despite the inhibition of slip. In this 
case, increasing plastic deformation at fixed temperature was apparently accomplished mainly 
by thickening of existing twins rather than by an increase in the number of twins. Although 
it is easy to understand that the high density of ordered precipitates will cause the large 
increase in flow stress, it is not obvious why the deformation mechanism changes from slip 
to twinning since both processes are inhibited by long range order. 

A different strengthening mechanism also involving twinning as the principal mode of 
deformation is observed in some solid-solutions. Yang and Vasudevan<348> have recently 
examined supersaturated solid solutions containing 10-16at%Al in Nb. These solutions 
exhibit imperfect B2 type ordering, the extent of which increases with aluminium content, as 
does the microhardness at room temperature. The microstructures examined after cold rolling 
to 25% reduction in the 10at%Al alloy and 5% reduction in the 13 and 16at%Al alloys were 
found to contain many twins with K1 planes of {112} type. Although, a positive identification 
of the twinning mode was not made, the presumption is that it is the usual b.c.c. mode which 
is a pseudo mode of the B2 structure. In these alloys, the effects of the incomplete B2 ordering 
in inhibiting twinning is apparently outweighed by that of the aluminium solute in promoting 
twinning. 

Further investigations of the propagation of either slip bands or deformation twins through 
other (obstacle) twins have been reported, especially for TiAl. Jin and Beeler<339·340> observed 
twin-twin intersections by electron microscopy during in situ deformation of a Ti-Al-Nb-Cr 
alloy. They observed a type I intersection in which two thin twins succeeded in propagating 
across a thin barrier twin whilst two others were halted by the barrier. However the lattice 
in the intersected region was not changed in orientation and no dislocations were seen to 
cross it. The mechanism seemed to be simply that a pile-up of twinning dislocations at the 
barrier twin eventually led to the nucleation of two new twinning dislocations on the far side 
of the barrier twin. These glided a little way into the matrix and then halted until they were 
pushed further by the nucleation and emission of more dislocations from the farther twin 
interface. Thus there is formally a glide discontinuity which is presumably taken elastically 
across the barrier twin. The authors relate this mechanism to their back stress measure
ments,<345> but it is not clear whether the mechanism is confined to very thin obstacle twins 
only. 

Rather similar conclusions could be derived from some of the micrographs of slip-twin 
and twin-twin intersections obtained by Appel et a/.<327·328> They examined both semi
coherent y-y boundaries and fully coherent K1 twin interfaces as obstacles. The semi
coherent interfaces have high residual stresses despite the misfit dislocations and this 
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leads to generation of high densities of glissile dislocations and small twins. Shear strains 
are more readily translated across fully coherent interfaces; the main mechanism is not 
known in detail but again may involve the nucleation of new dislocations rather than the 
incorporation processes discussed previously. 

Most work on deformation twinning has examined twins formed at relatively slow strain 
rates of the order J0-5-10-4 s- 1, but it has long been recognized that twinning is very sensitive 
to strain rate, and in many materials, it is promoted by high strain rates and low tempera
tures. Recent work shows that, in some cases, the same rules apply to ordered phases and 
intermetallic compounds, namely that deformation at high strain rates, and especially under 
shock loading conditions, tends to suppress slip and to promote twinning. One much quoted 
explanation rests on the postulate that dislocation glide is thermally activated so that the 
stress to sustain a given mean dislocation velocity, and hence a given strain rate, increases 
at low temperatures and/or high strain rates. The twinning stress, in contrast, is considered 
to be relatively insensitive to temperature or strain rate, so that when the stress reaches a 
critical level, twinning takes over from slip the task of maintaining the imposed strain rate. 
As mentioned in Section 5.3, with the very high strain rates obtained in shock loading, 
twinning may even be induced in f.c.c. alloys of aluminium with very high stacking fault 
energies. 

In a survey of the influence of strain rate on twinning, Gray<316J points out that some 
intermetallic compounds, e.g. those based on Ti3 AI, usually do not twin even under shock 
loading conditions, whereas others, e.g. Al3 Ti, twin readily. Recent experiments have shown 
that shock loading induces twinning in polycrystalline Ni3Al, in the B4 C component of an 
Al-B4 C cermet and in a Ti--48at%Al compound with additions of vanadium, chromium 
and/or niobium. Compounds based on TiAl, however, not only form deformation twins 
under shock loading, but also, as described above, deform by twinning at slow or even creep 
strain rates, and the amount of twinning increases with increasing temperature. This 
anomalous behaviour leads Gray to suggest that different twinning mechanisms may be 
responsible for twinning in TiAl at very fast and slow strain rates, respectively. 

The phenomenon of elastic twinning was discovered by Garber 56 years ago, but is still 
the subject of active research. A model of an elastic twin as a planar pile-up of continuously 
distributed twinning dislocations has given a fairly full description of elastic twinning under 
quasi-static conditions, but recent work has been directed towards dynamical descriptions 
of elastic twinning. In the theoretical description given by Boyco et at.<349J the (twinning) 
dislocation motion is assumed to be thermally activated at low velocities and viscous at the 
high initial velocities. A non-linear set of equations describing the dynamics of a thin elastic 
twin is developed and solved with suitable approximations to give the various stages in the 
transition from a thin elastic twin to a residual twin lamella, and finally thickening of this 
lamella. Various predictions were checked against new experiments on elastic twinning in 
calcite crystals and good agreement is claimed. The possibility of obtaining elastic twinning 
in advanced materials has also been considered. Elastic twinning as a stage of mechanical 
twinning can be obtained if a concentrated load is used and if the twin which appears satisfies 
a criterion which depends on the friction force. The authors predict that the high tempera
ture superconductor Y2a2Cu30 7 _x and the ferroelastic Gd2(Mo04 ) 3 should exhibit elastic 
twinning. Finally, the publication<350l by the American Institute of Physics of an English 
translation of a Russian book by Boyko, Garber and Kossevich dealing with elastic twinning 
should be noted. 

In another recent paper, Boyco and Beshers<351 J consider the possibility of using acoustic 
emission to estimate the twin velocity. Investigation of the acoustic emission associated with 
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elastic twinning has enabled the physical origins of the emission to be identified, and the 
application of acoustic methods to the study of twinning kinetics is discussed. 

Kriven<352l has given a very informative survey of recent work on twinning in structural 
ceramic materials. Much work in this area is concerned not with deformation twinning in the 
strict sense but with transformation twinning resulting from martensitic transformation in 
materials like zirconia or from ferroelastic materials. As first noted in Section 2. 7 in 
connection with hexagonal {lOll} twinning, and also as discussed above in relation to PST 
crystals of TiAl, arrays of twins formed in this way can nevertheless act as deformation twins 
if the product phase is subsequently stressed, and Kriven gives many examples of this kind 
of behaviour. Ferroelastic domains, like twins in martensitic transformations, are generated 
from mirror planes or two-fold axes of symmetry in the parent phase and are then in twin 
relation in the product. Growth of some domains and shrinkage of others is a mode of plastic 
deformation which may require much less stress than normal deformation twinning since the 
twins are preformed. Kriven, following Wadhawan and Boulesteix<353l refers to this as 
pseudoplasticity. Whatever the merits of this name, which is not generally used, there is no 
doubt that the modification of the twin structure by the tensile stress field of a propagating 
crack can give a two-three-fold increase in the toughness of ceramics of type (3Y-TZP), based 
on single phase zirconia, and (GMO), based on gadolinium molybdate. 

Rabenberg and Kim<354l have examined the twin interfaces in monoclinic zirconia mar
tensitically transformed from the tetragonal phase. Their specimens were partially reduced 
zirconia which gave an exceptionally high density of twin interfaces, together with stack
ing faults and dislocation-like defects; the twins were almost all of type (100)[001]. Steps 
parallel to the [001] twinning direction were visible in the interfaces when thin foils were 
examined by conventional TEM but g · b analysis failed to give consistent results for the 
Burgers vectors of these steps. However, lattice imaging is a powerful technique for study
ing interface structure, and it showed that the steps have screw character, i.e. the effective 
Burgers vector is parallel to the step, and that they are three unit cells in height. A struc
tural model of the boundary incorporates a relative translation t = tc away from the mirror 
symmetry atomic arrangement in order to reduce the misfit. The existence of this rela
tive translation has been verified by comparison of actual lattice images with computer 
simulations of these images. 

The misfit, i.e. the effective Burgers vector, of the rather high interface steps would be very 
large if each were composed entirely of elementary twinning dislocations, but if such a step 
is combined with a lattice [001] dislocation of opposite sign, this vector has the small 
magnitude of c- 2[3a sin(/)-90°)]:::: 0.074 c. Motion of these steps would thus produce a 
shear of magnitude s = 0.074c j3a :::: 0.025, whereas the shear of the (100)[001] twinning 
modes has the much larger value of 0.328. Whilst neither the Burgers vector nor the shear 
could be measured directly, the contrast experiments showed that it was very small. The 
observed steps are thus analogous to the b.c.c. dislocations discussed and enumerated by 
Bristowe and Crocker;<93 l they are allowable defects, but they do not produce the observed 
deformation twin. They have presumably formed as a result of accommodation stresses 
producing cancellation effects equivalent to emissary slip. 

Genuine deformation twinning, as distinct from the motion of transformation twins, was 
first investigated in thin film specimens of zirconia by Bailey<355l who measured the shear 
displacements and thus tabulated all the twinning elements for various modes, the most 
important of which have K 1 , q1 and s parameters of (100), [001], 0.328 and (110), [1 l8], 
0.228, respectively. Recently First and Heuer<356·357l have investigated the twins formed 
around a diamond indentation (or indent) produced by a Vickers hardness test on a single 
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crystal of zirconia. The complex stress field was approximated as a number of in-plane 
compression axes and the Schmid factors for various possible twins evaluated. The observed 
twins were predominantly of (110) type and these were also the most favourably orientated 
twins. 

Sapphire and ruby gemstones and the mineral corundum are all essentially oc-Al20 3 and 
are isostructural with haemetite (oc-Fe20 3). The structure is rhombohedral, but since the 
oxygen ions are in a slightly distorted h.c.p. packing and the aluminium cations occupy 
two-thirds of the octahedral interstices in a highly ordered fashion, it is convenient to use 
hexagonal rather than rhombohedral indices in describing the crystallography. In both 
haematite<358l and corundum,<359> some deformation twins (referred to as rhombohedral twins) 
have been identified with the following 'macroscopic' mode: 

K, = {Oll2} K2 = {Ol14} tt1 = (Olll) tt2 = (0221) 

Geipel et af.<360l have recently used high resolution electron microscopy to examine the 
interface structure of a deformation twin in sapphire, and have obtained results in good 
agreement with the earlier study by Bursill and Lin<36'l of the interface structure and the 
'micro' twinning elements in haematite. They describe the twin as a 'screw twin'; i.e. the atom 
sites in the two crystals are related not solely by a 180° rotation about tt 1 = (Olll) (as in 
a classical type II twin) but also by a translation t = k<Oill) parallel to this axis. Thus the 
two-fold pseudo-symmetry axis of classical theory is actually a two-fold screw pseudo
symmetry axis relating the atom sites of the two crystals. [A similar situation occurs in the 
isosceles model of a b.c.c. K1 interface, see Fig. 8(b )]. Geipel eta/. propose that the twins form 
by double cross-slip of a zonal twinning dislocation, a mechanism analogous to that suggested 
by Pirouz04.m-I?SJ for semiconducting materials. 

In a separate paper, Lagerlof et at.<362l describe a model for basal twinning in sapphire; this 
type of twinning becomes more important than slip as a deformation mode below about 
1000°C and has the following macroscopic crystallography (Kronberg<363>: 

K, = {0001} K2 ={lOll} tt 1 = (IOIO) tt2 = (l012) 

The mechanism proposed is the dissociation of a basal plane slip dislocation of type t(1120) 
into a leading partial t<IOIO) and a trailing partial t<OllO). The motion of the leading partial 
will create a two-layer microtwin, and this partial is assumed to rotate independently about 
pinning points and then to reunite with the trailing partial. The recombined lattice dislocation 
is then supposed to cross-slip up or down two planes and finally to redissociate and repeat 
the cycle. Thus the Piroux mechanism is again invoked to give layer by layer growth. 
However, the recent proliferation of models using this ratchet-type mechanism may be 
misleading since they mainly originate from one group, and it should be emphasized again 
that there is, at present, little or no direct evidence to support it. 

Since much of the emphasis of this review has been on crystallinity, it is appropriate to 
conclude by drawing attention to the fact that deformation twinning can be obtained in 
materials which are non-crystalline. Twins were found in a cast Al-Cu-Fe icosahedral 
quasicrystal by Dai and Urban<358l who suggested the crystallographic parameters of a 
possible deformation mode which could produce the observed orientation relation. However, 
the origin of this twin is not known it could well have arisen from a growth accident, so the 
possibility of deformation twinning of a quasicrystal remained open until the recent 
experiments of Shield and Kramer.<359> They deformed an alloy of nominal composition 
Al65 Cu23 Fe12 by high temperature creep in compression to a total strain of more than 30%. 
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The specimens prepared by powder metallurgical techniques were about 70% face-centred 
icosahedral quasicrystals and 30% Al7Cu2Fe and this phase structure was apparently 
unaffected by the large deformation. Electron microscopy of the deformed specimens 
showed numerous twinned regions of quasicrystal superimposed on a structure of finer 
(possibly slip?) bands. Analysis of the electron diffraction data leads to the conclusion that 
both K1 and K2 are five-fold planes whilst q1 and q2 are midway between two two-fold axes 
of the quasicrystal. In terms of the coordinate axes and indexing scheme of Cahn eta/., the 
twinning elements may be written K1 = {1/0 0/1 0/0}, K2 = {0/1 0/0 1/0}, q1 = (1/2 1/1 2/1) 
and q2 = (1/2 1/1 1/0) and the twinning shear is s = 1.02. This mode is identical to that 
found by Dai and Urban and it is interesting to note that it is the equivalent of a compound 
mode since all the twinning elements are rational. 

SUMMARY 

The concepts of twinning shears and twinning modes are introduced. The early attempts 
to predict these features are presented. This is followed by a detailed discussion of the formal 
theories of Bilby and Crocker and Bevis and Crocker for predicting these elements. Their 
formalisms are applied to predict twinning modes in single lattice structures, superlattices, 
hexagonal close packed structure and other double lattice structures. Wherever possible the 
predicted modes are compared with those observed. 

The description of fully coherent, rational twin interfaces is presented, and the concepts 
of elementary, zonal, complementary and partial twinning dislocations are discussed. It is 
suggested that the irrational K1 twin interfaces may be faceted on the microscopic scale, and 
these facets may be coherent. 

Homogeneous and heterogeneous nucleation of twins are discussed. The growth of twins 
by the nucleation of twinning dislocations on planes parallel and contiguous to the coherent 
twin boundary is considered. Various dislocation models proposed for the formation of twins 
in b.c.c., f.c.c., diamond cubic, zinc-blende and h.c.p. structures are critically reviewed. In 
some cases the supporting experimental evidence is presented. Additionally, the effects of 
deformation temperature, imposed strain-rate, alloying and doping, prestrain, precipitates 
and second phase disperions on deformation twinning are discussed. 

Mechanistic details regarding the accommodation processes occurring at twins terminating 
within a crystal, slip-twin, twin-slip and twin-twin intersections are reviewed and are 
compared with the experimental results. The role of twins in the nucleation of fracture in 
materials is also considered. 
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