

1

DEFORMATION TWINNING

Irene J. Beyerlein, University of California, Santa Barbara, CA

Twinning in
materialsImage: Sum of the second se

Nanotwinned Cu, L. Lu et al., *Science, 2004*

Magnesium M. Arul Kumar, LANL

Boron Nitride, Tian et al. *Nature* 2013

Nanocrystalline metals, Ma and Zhu, *Ref Mod Mat Sci Mat Engng*, 2016

Basics

- Deformation or in growth (we focus on deformation here)
- Different crystal structures (fcc, bcc, hcp, orthorhombic, B2)
- Different metals and alloys (brass vs Ti64)
- Amounts are sensitive to strain level, direction of straining, alloying, temperature, and strain rate
- Common features
 - Manifests as a domain within a crystal
 - Introduces a subcrystalline boundary or boundaries
 - Theoretical twin/matrix misorientation
 - Crystallographic planes are sheared a finite amount
- For this lecture, we will consider twinning in HCP metals

HCP METALS AND ALLOYS

Hexagonal close packed (HCP) metals:

HEXAGONAL CLOSE PACKED

c/a = 1.56 - 1.89

c/a r	atio:
Mg:	1.624
Zr:	1.593
Ti:	1.587

H ¹	Periodic Table of the Elements								He								
3 Li	Be	 hydrogen alkali metals alkali earth metals 					 p n n 	 poor metals nonmetals noble gases 					C 6	N 7	08	F 9	10 Ne
11 Na	Mg		trans	ition n	netals	13	l ra	oble g are eal	rth me	tals		13 Al	14 Si	15 P	16 <mark>S</mark>	17 Cl	18 Ar
19 K	20 Ca	21 Sc	Ti	V ²³	24 Cr	25 Mn	26 Fe	Со	28 Ni	29 Cu	Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	Zr	41 Nb	42 Mo	43 Tc	44 Ru	Rh	46 Pd	47 Ag	Cd	49 In	50 Sn	51 Sb	52 Te	53 	Xe Xe
55 Cs	56 Ba	57 La	Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Ti	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une	110 Unn								

Ce	59	60	61	62	Eu	64	65	66	67	68	69	70	71
58	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

HCP metals and their alloys

High strength to weight, biocompatibility, fatigue resistance, radiation resistance

Nuclear Energy

Deformation behavior of hcp metals

Significantly depends on direction (plastic anisotropy)

hcp metals can exhibit large differences in CRSS

MATERIALS Hcp crystals have a high propensity for twinning

Mesoscopic CRSS values¹ for slip

Slip and twinning affect stress-strain response

Knezevic et al. Scripta Mater 2016

BASICS OF DEFORMATION TWINS

7 observed twin planes

Distinct properties:

- Twinning plane
- Twinning direction
- Characteristic twin shear
- Step height on twinning partial
- Consequently,
 - different twin/matrix orientation relationship
 - shear zone axis
 - accommodates c-axis contraction or extension

Twin variants

Dark red plane is a {1011} type plane

There are six variants $v^{(i)}$ Independently oriented

Twins are mesoscale structures

- 1) Reoriented 3D domains, V
- 2) Provide unidirectional shear, γ
- 3) Limited amounts of shear; fixed twin shear S
- 4) Shear rate limited by boundary migration
- 5) Two latent effects on slip

 $Tensile \ Twin$

Domain for new slip or twinning activity

ND

Boundary is a barrier for slip and twinning

IPF//ND

Manifestations of twinning in hcp metals

- Can be identified by OIM
 - Shape (thickness, volume)
 - mode
 - variant within type
- Can take on many configurations:
 - Twin intersections,
 - Many parallel twins
 - double twinning,
 - twin chains
- If the applied load were to be reversed, detwinning has been reported to happen.

Proust, Beyerlein et al., Expt Mech 2006 Knezevic, Beyerlein et al., IJP, 2013

Twinning is statistical in nature

FEATURE	Mg 3%	{10-12} tensile twins
# of grains	2340	TT Orientation
# of twins	8550	
# of twinned grains	1534	
# of grain boundaries	11698	

GRAIN AREA, GRAIN ORIENTATION, GRAIN ORIENTATION

- Not all favorably oriented grains twin
- Some not favorably oriented grains twin
- Only 40% of twin variants have highest Schmid factor
- Not all grains of the same orientation twin
- Twinned grains contain variable numbers of twins
- Not all grains of the same size twin
- Twins have variable thickness

Beyerlein et al., Phil Mag 2010

STAGES OF GROWTH OF TWINNING UNDER DEFORMATION

Multiscale stages in twin development

Stage 1: Formation Embryo

Stage 2: Propagation Embryo->Lamella

Stage 3: Expansion Lamellae

1) NUCLEATION

ATOMIC TO NANOSCALE 2) EXPANSION: PROPAGATION

NANOSCALE TO SUBMICRON 3) EXPANSION: THICKENING

SUBMICRON TO MICRON SCALE

Observations

Courtesy of Arul Kumar LANL

Other variants of growth at the mesoscale

Double twinning

Twin-twin junctions

ARE POSSIBLE

- How are these accomplished?
- What drives them?

NUCLEATION

Twin embryos

25

Embryos take on a seed-like or ellipsoidal shape

Braisaz et al. 1997

Basha et al. 2018

Single crystal Mg pillar

Courtesy of Lin Jiang, UC-Irvine

Wang and Beyerlein MSMSE 2012

Jiang et al. MSE-A, 2019

Jeong et al. Acta Mater 2018

26

Twin nucleation at grain boundaries

Twin nucleation in hcp metals

Conservation of the Burgers vector

$$b_{LD} \Rightarrow b_R + nb_{TD}$$

Energy

$$\Delta W = W_{core} - \Sigma W_{int} + \gamma r - W_{work}$$

Capolungo and Beyerlein 2008 (3D)

A possible grain boundary mechanism for twin nucleation

Beyerlein and Tome, Proc. Roy. Soc. A, 2010

Conservation of the Burgers vector

$$b \Rightarrow b_R + nb_{TD}$$

Energy

$$\Delta W = W_{core} - \Sigma W_{int} + \gamma r - W_{work}$$

MD simulation: Symmetric tilt boundaries contain defects with large Burgers vectors

Wang, Beyerlein, MMTA 2012; Wang and Beyerlein 2012, MSMSE

MD simulation of twin nucleation

Wang, Beyerlein, MSMSE, 2012 Wang, Beyerlein, Tome, IJP, 2014

Experimental observations

Local <a>-axis load applied to the SX Mg film

SX Mg thin film contains a pre-existing {10-12} twin

A contraction {10-11} twin embryo forms as load is applied

Compared with the local stress calculation, the CTW has the highest TRSS according to the calculation of the local stresses

PROPAGATION

Including discrete twins in CP ³⁶ modeling

Ardeljan et al. CMAME 2016

Arul Kumar et al. AM 2015; 2016

Cheng and Ghosh. 2017

Abdolvand and Wilkinson 2016

Individual grain with a twin inside a material

WC SANTA BARBARA MATERIALS TRSS field created by a {10-12} twin inside a crystal

MAP OF TWIN-DRIVING STRESS COMPONENT

- Front: Twinning stress concentration
- Sides: Anti-twinning for the {10-12} twin
- Self stress promotes lengthening but not widening

"Self stress" of a twin

Consider "self" stress field: single twin inside its parent single crystal

- I. J. Beyerlein, X. Zhang, and A. Misra, "Growth twins and deformation twins in metals", *Annual Reviews in Materials Research* 44 (2014) 329-363.
- M. Arul Kumar, I. J. Beyerlein, "Local microstructure and micromechanical stress evolution during deformation twinning in hexagonal polycrystals", *J. Mater. Res.*, 35 (2020) 217-241.
- I. J. Beyerlein, M. Arul Kumar, "The Stochastic Nature of Deformation Twinning: Application to HCP Materials", Springer Nature Switzerland AG 2018 W. Andreoni, S. Yip (eds.), *Handbook of Materials Modeling*, (2018) 1-39.
- D. Zhang, L. Jiang, B. Zheng, J. M. Schoenung, S. Mahajan, E. J. Lavernia, and I. J. Beyerlein, "Deformation Twinning (Update)", In: Reference Module in Encyclopedia of Materials: Materials Science and Materials Engineering, Elsevier B. V. (2016). 1-24
- C. N. Tomé, I. J. Beyerlein, R. J. McCabe, and J. Wang, "Multi-scale statistical study of twinning in HCP metals", In: *Engineering (ICME) for Metals: Reinvigorating Engineering Design with Science*, Wiley Press, 2018 (Horstemeyer, M.F., ed.).